Single-Ion Conducting Polymer Nanoparticles as Functional Fillers for Solid Electrolytes in Lithium Metal Batteries

被引:40
|
作者
Porcarelli, Luca [1 ,2 ,4 ]
Sutton, Preston [1 ,2 ]
Bocharova, Vera [3 ]
Aguirresarobe, Robert H. [4 ]
Zhu, Haijin [1 ,2 ]
Goujon, Nicolas [1 ,2 ,4 ]
Leiza, Jose R. [4 ]
Sokolov, Alexei [3 ,5 ]
Forsyth, Maria [1 ,2 ,4 ,6 ]
Mecerreyes, David [4 ,6 ]
机构
[1] Deakin Univ, ARC Ctr Excellence Electromat Sci, Melbourne, Vic 3125, Australia
[2] Deakin Univ, Inst Frontier Mat, Melbourne, Vic 3125, Australia
[3] Oak Ridge Natl Lab, Chem Sci Div, POB 2009, Oak Ridge, TN 37831 USA
[4] POLYMAT Univ Basque Country UPV EHU, Joxe Mari Korta Ctr, Donostia San Sebastian 20018, Spain
[5] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[6] Basque Fdn Sci, Ikerbasque, E-48011 Bilbao, Spain
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
single-ion; nanoparticle; lithium; electrolyte; gel; solid-state; battery; SELF-DIFFUSION; MONOMERS; DESIGN; ANODE;
D O I
10.1021/acsami.1c15771
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composite solid electrolytes including inorganic nanoparticles or nanofibers which improve the performance of polymer electrolytes due to their superior mechanical, ionic conductivity, or lithium transference number are actively being researched for applications in lithium metal batteries. However, inorganic nanoparticles present limitations such as tedious surface functionalization and agglomeration issues and poor homogeneity at high concentrations in polymer matrixes. In this work, we report on polymer nanoparticles with a lithium sulfonamide surface functionality (LiPNP) for application as electrolytes in lithium metal batteries. The particles are prepared by semibatch emulsion polymerization, an easily up-scalable technique. LiPNPs are used to prepare two different families of particle-reinforced solid electrolytes. When mixed with poly(ethylene oxide) and lithium bis-(trifluoromethane)sulfonimide (LiTFSI/PEO), the particles invoke a significant stiffening effect (E' > 10(6) Pa vs 10(5) Pa at 80 degrees C) while the membranes retain high ionic conductivity (sigma = 6.6 x 10(-4) S cm(-1)). Preliminary testing in LiFePO4 lithium metal cells showed promising performance of the PEO nanocomposite electrolytes. By mixing the particles with propylene carbonate without any additional salt, we obtain true single-ion conducting gel electrolytes, as the lithium sulfonamide surface functionalities are the only sources of lithium ions in the system. The gel electrolytes are mechanically robust (up to G' = 10(6) Pa) and show ionic conductivity up to 10(-4 )S cm(-1) . Finally, the PC nanocomposite electrolytes were tested in symmetrical lithium cells. Our findings suggest that all-polymer nanoparticles could represent a new building block material for solid-state lithium metal battery applications.
引用
收藏
页码:54354 / 54362
页数:9
相关论文
共 50 条
  • [1] Ion transport in single-ion conducting polymer electrolytes for lithium batteries
    Schaefer, Jennifer
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [2] Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature
    Porcarelli, Luca
    Shaplov, Alexander S.
    Bella, Federico
    Nair, Jijeesh R.
    Mecerreyes, David
    Gerbaldi, Claudio
    [J]. ACS ENERGY LETTERS, 2016, 1 (04): : 678 - 682
  • [3] Single-ion polymer brush electrolytes for lithium metal batteries
    Li, Sipei
    Mohamed, Alex
    Pande, Vikram
    Viswanathan, Venkat
    Whitacre, Jay
    Matyjaszewski, Krzysztof
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [4] Single-Ion Conducting Polymer Electrolytes for Solid-State Lithium-Metal Batteries: Design, Performance, and Challenges
    Zhu, Jiadeng
    Zhang, Zhen
    Zhao, Sheng
    Westover, Andrew S.
    Belharouak, Ilias
    Cao, Peng-Fei
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (14)
  • [5] Dicarbonate acrylate based single-ion conducting polymer electrolytes for lithium batteries
    Engler, Anthony
    Park, Habin
    Liu, Nian
    Kohl, Paul A.
    [J]. JOURNAL OF POWER SOURCES, 2023, 574
  • [6] Lithium deposition in single-ion conducting polymer electrolytes
    Borzutzki, Kristina
    Dong, Kang
    Nair, Jijeesh Ravi
    Wolff, Beatrice
    Hausen, Florian
    Eichel, Rudiger-A.
    Winter, Martin
    Manke, Ingo
    Brunklaus, Gunther
    [J]. CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (07):
  • [7] Cross-linked Single-Ion Solid Polymer Electrolytes with Alternately Distributed Lithium Sources and Ion-Conducting Segments for Lithium Metal Batteries
    Chen, Shaoshan
    Li, Yu
    Wang, Yong
    Li, Zeyu
    Peng, Cong
    Feng, Yiyu
    Feng, Wei
    [J]. MACROMOLECULES, 2021, 54 (19) : 9135 - 9144
  • [8] Plasticized and salt-doped single-ion conducting polymer electrolytes for lithium batteries
    Ghorbanzade, Pedram
    Loaiza, Laura C.
    Johansson, Patrik
    [J]. RSC ADVANCES, 2022, 12 (28) : 18164 - 18167
  • [9] Stepwise optimization of single-ion conducting polymer electrolytes for high-performance lithium-metal batteries
    Dong, Xu
    Chen, Zhen
    Gao, Xinpei
    Mayer, Alexander
    Liang, Hai-Peng
    Passerini, Stefano
    Bresser, Dominic
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2023, 80 : 174 - 181
  • [10] UV-Cured Interpenetrating Networks of Single-ion Conducting Polymer Electrolytes for Rechargeable Lithium Metal Batteries
    Guan, Tianyun
    Rong, Zhuolin
    Cheng, Fangyi
    Zhang, Wangqing
    Chen, Jun
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (12): : 12532 - 12539