Convergence of hybrid steepest-descent methods for variational inequalities

被引:316
|
作者
Xu, HK [1 ]
Kim, TH
机构
[1] Univ Durban Westville, Dept Math, Durban, South Africa
[2] Pukyong Natl Univ, Div Math Sci, Pusan, South Korea
基金
新加坡国家研究基金会;
关键词
iterative algorithms; hybrid steepest-descent methods; convergence; nonexpansive mappings; Hilbert space; constrained pseudo-inverses;
D O I
10.1023/B:JOTA.0000005048.79379.b6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Assume that F is a nonlinear operator on a real Hilbert space H which is eta-strongly monotone and kappa-Lipschitzian on a nonempty closed convex subset C of H. Assume also that C is the intersection of the fixed point sets of a finite number of nonexpansive mappings on H. We devise an iterative algorithm which generates a sequence (x(n)) from an arbitrary initial point x(0)is an element ofH. The sequence (x(n)) is shown to converge in norm to the unique solution u* of the variational inequality [F(u*), v - u*] greater than or equal to 0, for v is an element of C. Applications to constrained pseudoinverse are included.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 50 条
  • [1] Convergence of Hybrid Steepest-Descent Methods for Variational Inequalities
    H. K. Xu
    T. H. Kim
    Journal of Optimization Theory and Applications, 2003, 119 : 185 - 201
  • [2] Convergence of hybrid steepest-descent methods for generalized variational inequalities
    Zeng, LC
    Wong, NC
    Yao, JC
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (01) : 1 - 12
  • [3] Strong convergence theorems of relaxed hybrid steepest-descent methods for variational inequalities
    Zeng, LC
    Ansari, QH
    Wu, SY
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (01): : 13 - 29
  • [4] STRONG CONVERGENCE OF THE MODIFIED HYBRID STEEPEST-DESCENT METHODS FOR GENERAL VARIATIONAL INEQUALITIES
    Yao, Yonghong
    Noor, Muhammad Aslam
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2007, 24 (1-2) : 179 - 190
  • [5] The modified and relaxed hybrid steepest-descent methods for variational inequalities
    Xu, Haiwen
    Song, Enbin
    Pan, Heping
    Shao, Hu
    Sun, Liming
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 169 - 174
  • [6] On modified hybrid steepest-descent methods for general variational inequalities
    Yao, Yonghong
    Noor, Muhammad Aslam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) : 1276 - 1289
  • [7] Convergence Analysis of Modified Hybrid Steepest-Descent Methods with Variable Parameters for Variational Inequalities
    L. C. Zeng
    N. C. Wong
    J. C. Yao
    Journal of Optimization Theory and Applications, 2007, 132 : 51 - 69
  • [8] Strong weak convergence theorems of implicit hybrid steepest-descent methods for variational inequalities
    Ceng, Lu-Chuan
    Lee, Chinsan
    Yao, Jen-Chih
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (01): : 227 - 244
  • [9] Convergence analysis of modified hybrid steepest-descent methods with variable parameters for variational inequalities
    Zeng, L. C.
    Wong, N. C.
    Yao, J. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 132 (01) : 51 - 69
  • [10] Hybrid Steepest-Descent Methods for Triple Hierarchical Variational Inequalities
    Ceng, L. C.
    Latif, A.
    Wen, C. F.
    Al-Mazrooei, A. E.
    JOURNAL OF FUNCTION SPACES, 2015, 2015