Nonparametric Predictive Inference Bootstrap with Application to Reproducibility of the Two-Sample Kolmogorov-Smirnov Test

被引:7
|
作者
Coolen, Frank P. A. [1 ]
Bin Himd, Sulafah [2 ]
机构
[1] Univ Durham, Dept Math Sci, Durham, England
[2] King Abdulaziz Univ, Dept Stat, Jeddah, Saudi Arabia
关键词
Bootstrap; Kolmogorov-Smirnov test; Nonparametric predictive inference; Reproducibility of tests; P-VALUES; REPLICATION;
D O I
10.1007/s42519-020-00097-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new bootstrap method based on the nonparametric predictive inference (NPI) approach to statistics. NPI is a frequentist statistics framework which explicitly focuses on prediction of future observations. The NPI framework enables a bootstrap method (NPI-B) to be introduced which, different to Efron's classical bootstrap (Ef-B), is aimed at prediction of future observations instead of estimation of population characteristics. A brief initial comparison of NPI-B and Ef-B is presented. The main reason for introducing NPI-B here is for its application to NPI for reproducibility of statistical tests, which is illustrated for the two-sample Kolmogorov-Smirnov test.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nonparametric Predictive Inference Bootstrap with Application to Reproducibility of the Two-Sample Kolmogorov–Smirnov Test
    Frank P. A. Coolen
    Sulafah Bin Himd
    [J]. Journal of Statistical Theory and Practice, 2020, 14
  • [2] Two-sample Kolmogorov-Smirnov test using a Bayesian nonparametric approach
    Al-Labadi L.
    Zarepour M.
    [J]. Mathematical Methods of Statistics, 2017, 26 (3) : 212 - 225
  • [3] A note on the biasedness and unbiasedness of two-sample Kolmogorov-Smirnov test
    Bubeliny, Peter
    [J]. STATISTICS & RISK MODELING, 2013, 30 (02) : 181 - 188
  • [4] Application of Bootstrap Method in Kolmogorov-Smirnov Test
    Wang, Chengdong
    Zeng, Bo
    Shao, Jiye
    [J]. 2011 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (ICQR2MSE), 2011, : 287 - 291
  • [5] Kolmogorov-Smirnov two-sample test based on regression rank scores
    Martin Schindler
    [J]. Applications of Mathematics, 2008, 53 : 297 - 304
  • [6] Two-sample Kolmogorov-Smirnov fuzzy test for fuzzy random variables
    Hesamian, Gholamreza
    Chachi, Jalal
    [J]. STATISTICAL PAPERS, 2015, 56 (01) : 61 - 82
  • [7] Kolmogorov-Smirnov two-sample test based on regression rank scores
    Schindler, Martin
    [J]. APPLICATIONS OF MATHEMATICS, 2008, 53 (04) : 297 - 304
  • [8] Finite sampling inequalities: An application to two-sample Kolmogorov-Smirnov statistics
    Greene, Evan
    Wellner, Jon A.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (12) : 3701 - 3715
  • [9] Kolmogorov-Smirnov Two Sample Test with Continuous Fuzzy Data
    Lin, Pei-Chun
    Wu, Berlin
    Watada, Junzo
    [J]. INTEGRATED UNCERTAINTY MANAGEMENT AND APPLICATIONS, 2010, 68 : 175 - +
  • [10] A 3-SAMPLE KOLMOGOROV-SMIRNOV TEST
    DAVID, HT
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (03): : 842 - 851