Multiple positive solutions for a class of Kirchhoff type equations with indefinite nonlinearities

被引:8
|
作者
Che, Guofeng [1 ]
Wu, Tsung-fang [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
[2] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
基金
中国国家自然科学基金;
关键词
Multiple positive solutions; Kirchhoff type equation; Indefinite nonlinearities; GROUND-STATE SOLUTIONS; SEMILINEAR ELLIPTIC-EQUATIONS; SCHRODINGER-POISSON SYSTEM; EXISTENCE; CONCAVE;
D O I
10.1515/anona-2021-0213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following Kirchhoff type equation: -(a+b integral(RN) vertical bar del u vertical bar(2)dx)Delta u + u = k(x)vertical bar u vertical bar(p-2)u + m(x)vertical bar u vertical bar(q-2)u in R-N, where N >= 3, a, b > 0, 1 < q < 2 < p < min{ 4, 2*}, 2* = 2N/(N - 2), k is an element of C(R-N) is bounded and m is an element of Lp/(p-q)(R-N). By imposing some suitable conditions on functions k(x) and m(x), we firstly introduce some novel techniques to recover the compactness of the Sobolev embedding H-1(R-N) -> L-r(R-N)(2 <= r < 2*); then the Ekeland variational principle and an innovative constraint method of the Nehari manifold are adopted to get three positive solutions for the above problem.
引用
下载
收藏
页码:598 / 619
页数:22
相关论文
共 50 条