Sparse High-Dimensional Models in Economics

被引:104
|
作者
Fan, Jianqing [1 ,2 ]
Lv, Jinchi [3 ]
Qi, Lei [1 ,2 ]
机构
[1] Princeton Univ, Bendheim Ctr Finance, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Univ So Calif, Marshall Sch Business, Informat & Operat Management Dept, Los Angeles, CA 90089 USA
来源
基金
美国国家科学基金会;
关键词
variable selection; independence screening; oracle properties; penalized likelihood; factor models; portfolio selection; NONCONCAVE PENALIZED LIKELIHOOD; CLIPPED ABSOLUTE DEVIATION; GENERALIZED LINEAR-MODELS; LARGE COVARIANCE MATRICES; VARIABLE SELECTION; ADAPTIVE LASSO; DIVERGING NUMBER; REGRESSION; REGULARIZATION; CONVERGENCE;
D O I
10.1146/annurev-economics-061109-080451
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article reviews the literature on sparse high-dimensional models and discusses some applications in economics and finance. Recent developments in theory, methods, and implementations in penalized least-squares and penalized likelihood methods are highlighted. These variable selection methods are effective in sparse high-dimensional modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in sparse ultra-high-dimensional modeling are also briefly discussed.
引用
收藏
页码:291 / 317
页数:27
相关论文
共 50 条
  • [1] Sparse Markov Models for High-dimensional Inference
    Ost, Guilherme
    Takahashi, Daniel Y.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [2] Inference for High-Dimensional Sparse Econometric Models
    Belloni, Alexandre
    Chernozhukov, Victor
    Hansen, Christian B.
    [J]. ADVANCES IN ECONOMICS AND ECONOMETRICS, VOL III: ECONOMETRICS, 2013, (51): : 245 - 295
  • [3] Robust Testing in High-Dimensional Sparse Models
    George, Anand Jerry
    Canonne, Clement L.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [4] STATISTICAL INFERENCE IN SPARSE HIGH-DIMENSIONAL ADDITIVE MODELS
    Gregory, Karl
    Mammen, Enno
    Wahl, Martin
    [J]. ANNALS OF STATISTICS, 2021, 49 (03): : 1514 - 1536
  • [5] Shrinkage and Sparse Estimation for High-Dimensional Linear Models
    Asl, M. Noori
    Bevrani, H.
    Belaghi, R. Arabi
    Ahmed, Syed Ejaz
    [J]. PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 147 - 156
  • [6] ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS
    Huang, Jian
    Ma, Shuangge
    Zhang, Cun-Hui
    [J]. STATISTICA SINICA, 2008, 18 (04) : 1603 - 1618
  • [7] High-dimensional sparse multivariate stochastic volatility models
    Poignard, Benjamin
    Asai, Manabu
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (01) : 4 - 22
  • [8] The adaptive lasso in high-dimensional sparse heteroscedastic models
    Wagener J.
    Dette H.
    [J]. Mathematical Methods of Statistics, 2013, 22 (2) : 137 - 154
  • [10] Penalised robust estimators for sparse and high-dimensional linear models
    Umberto Amato
    Anestis Antoniadis
    Italia De Feis
    Irene Gijbels
    [J]. Statistical Methods & Applications, 2021, 30 : 1 - 48