A NOTE ON THE ENDPOINT REGULARITY OF THE DISCRETE MAXIMAL OPERATOR

被引:19
|
作者
Liu, Feng [1 ]
Wu, Huoxiong [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete maximal operator; Sobolev space; fractional maximal operator; bounded variation; continuity;
D O I
10.1090/proc/13962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we study the regularity properties of the discrete maximal operators at endpoint. Precisely, we show that the general discrete centered and non-centered maximal operators are bounded and continuous from l(1)(Z) to BV(Z), as well as the non-centered discrete maximal operator maps BV(Z) -> BV(Z) boundedly under a more restrictive condition, where BV(Z) denotes the set of functions of bounded variation defined on Z. As an immediate consequence, we obtain somewhat unexpected endpoint regularities of the discrete fractional maximal functions.
引用
收藏
页码:583 / 596
页数:14
相关论文
共 50 条