Andronov-Hopf bifurcation with and without parameter in a cubic memristor oscillator with a line of equilibria

被引:23
|
作者
Korneev, Ivan A. [1 ]
Semenov, Vladimir V. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Phys, Astakhanskaya Str 83, Saratov 410012, Russia
关键词
D O I
10.1063/1.4996401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The model of a memristor-based oscillator with cubic nonlinearity is studied. The considered system has infinitely many equilibrium points, which build a line of equilibria in the phase space. Numerical modeling of the dynamics is combined with the bifurcational analysis. It has been shown that the oscillation excitation has distinctive features of the supercritical Andronov-Hopf bifurcation and can be achieved by changing of a parameter value as well as by variation of initial conditions. Therefore, the considered bifurcation is called Andronov-Hopf bifurcation with and without parameter. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On the Andronov-Hopf bifurcation theorem
    Izmailov, AF
    DIFFERENTIAL EQUATIONS, 2001, 37 (05) : 640 - 646
  • [2] Subcritical Andronov-Hopf scenario for systems with a line of equilibria
    Korneev, Ivan A.
    Slepnev, Andrei, V
    Vadivasova, Tatiana E.
    Semenov, Vladimir V.
    CHAOS, 2021, 31 (07)
  • [3] The Andronov-Hopf bifurcation with weakly oscillating parameters
    M. G. Yumagulov
    L. S. Ibragimova
    S. M. Muzafarov
    I. D. Nurov
    Automation and Remote Control, 2008, 69 : 36 - 41
  • [4] Andronov-Hopf bifurcation in systems with Preisach operator
    A. A. Zhezherun
    N. A. Kuznetsov
    D. I. Rachinskii
    Doklady Mathematics, 2008, 78
  • [5] The Andronov-Hopf Bifurcation with 2:1 Resonance
    D. Yu. Volkov
    Journal of Mathematical Sciences, 2005, 128 (2) : 2831 - 2834
  • [6] A degenerate case of Andronov-Hopf bifurcation at infinity
    A. M. Krasnosel’skii
    Automation and Remote Control, 2010, 71 : 2307 - 2319
  • [7] Numerical construction of an Andronov-Hopf bifurcation surface
    Khalin, AL
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 937 - 940
  • [8] A degenerate case of Andronov-Hopf bifurcation at infinity
    Krasnosel'skii, A. M.
    AUTOMATION AND REMOTE CONTROL, 2010, 71 (11) : 2307 - 2319
  • [9] The Andronov-Hopf bifurcation with weakly oscillating parameters
    Yumagulov, M. G.
    Ibragimova, L. S.
    Muzafarov, S. M.
    Nurov, I. D.
    AUTOMATION AND REMOTE CONTROL, 2008, 69 (01) : 36 - 41
  • [10] Andronov-Hopf Bifurcation in Systems with Preisach Operator
    Zhezherun, A. A.
    Kuznetsov, N. A.
    Rachinskii, D. I.
    DOKLADY MATHEMATICS, 2008, 78 (02) : 705 - 709