Language to Code: Learning Semantic Parsers for If-This-Then-That Recipes

被引:0
|
作者
Quirk, Chris [1 ]
Mooney, Raymond [2 ]
Galley, Michel [1 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] UT Austin, Austin, TX USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using natural language to write programs is a touchstone problem for computational linguistics. We present an approach that learns to map natural-language descriptions of simple "if-then" rules to executable code. By training and testing on a large corpus of naturally-occurring programs (called "recipes") and their natural language descriptions, we demonstrate the ability to effectively map language to code. We compare a number of semantic parsing approaches on the highly noisy training data collected from ordinary users, and find that loosely synchronous systems perform best.
引用
收藏
页码:878 / 888
页数:11
相关论文
共 50 条
  • [1] Learning Executable Semantic Parsers for Natural Language Understanding
    Liang, Percy
    [J]. COMMUNICATIONS OF THE ACM, 2016, 59 (09) : 68 - 76
  • [2] Learning to Learn Semantic Parsers from Natural Language Supervision
    Labutov, Igor
    Yang, Bishan
    Mitchell, Tom
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1676 - 1690
  • [3] Learning an ensemble of semantic parsers for building dialog-based natural language interfaces
    Tang, Lappoon R.
    [J]. KI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4314 : 102 - 112
  • [4] Bootstrapping Multilingual Semantic Parsers using Large Language Models
    Awasthi, Abhijeet
    Gupta, Nitish
    Samanta, Bidisha
    Dave, Shachi
    Sarawagi, Sunita
    Talukdar, Partha
    [J]. 17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 2455 - 2467
  • [5] Using String-Kernels for Learning Semantic Parsers
    Kate, Rohit J.
    Mooney, Raymond J.
    [J]. COLING/ACL 2006, VOLS 1 AND 2, PROCEEDINGS OF THE CONFERENCE, 2006, : 913 - 920
  • [6] Learning semantic parsers: A constraint handling rule approach
    Aguilar-Solis, Dulce
    [J]. LOGIC PROGRAMMING, PROCEEDINGS, 2006, 4079 : 447 - 448
  • [7] Constrained Language Models Yield Few-Shot Semantic Parsers
    Shin, Richard
    Lin, Christopher H.
    Thomson, Sam
    Chen, Charles
    Roy, Subhro
    Platanios, Emmanouil Antonios
    Pauls, Adam
    Klein, Dan
    Eisner, Jason
    Van Durme, Benjamin
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 7699 - 7715
  • [8] An Imitation Game for Learning Semantic Parsers from User Interaction
    Yao, Ziyu
    Tang, Yiqi
    Yih, Wen-Tau
    Sun, Huan
    Su, Yu
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 6883 - 6902
  • [9] Grounding language acquisition by training semantic parsers using captioned videos
    Ross, Candace
    Barbu, Andrei
    Berzak, Yevgeni
    Myanganbayar, Battushig
    Katz, Boris
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 2647 - 2656
  • [10] Genie: A Generator of Natural Language Semantic Parsers for Virtual Assistant Commands
    Campagna, Giovanni
    Xu, Silei
    Moradshahi, Mehrad
    Socher, Richard
    Lam, Monica S.
    [J]. PROCEEDINGS OF THE 40TH ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '19), 2019, : 394 - 410