Hardware-Efficient Microwave-Activated Tunable Coupling between Superconducting Qubits

被引:47
|
作者
Mitchell, Bradley K. [1 ,2 ]
Naik, Ravi K. [1 ,2 ]
Morvan, Alexis [1 ,2 ]
Hashim, Akel [1 ,2 ]
Kreikebaum, John Mark [1 ,3 ]
Marinelli, Brian [1 ,2 ]
Lavrijsen, Wim [2 ]
Nowrouzi, Kasra [1 ,2 ]
Santiago, David I. [1 ,2 ]
Siddiqi, Irfan [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
INTERACTING PHOTONS; STATE;
D O I
10.1103/PhysRevLett.127.200502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generating high-fidelity, tunable entanglement between qubits is crucial for realizing gate-based quantum computation. In superconducting circuits, tunable interactions are often implemented using flux tunable qubits or coupling elements, adding control complexity and noise sources. Here, we realize a tunable ZZ interaction between two transmon qubits with fixed frequencies and fixed coupling, induced by driving both transmons off resonantly. We show tunable coupling over 1 order of magnitude larger than the static coupling, and change the sign of the interaction, enabling cancellation of the idle coupling. Further, this interaction is amenable to large quantum processors: the drive frequency can be flexibly chosen to avoid spurious transitions, and because both transmons are driven, it is resilient to microwave cross talk. We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of 99.43(1)% as measured by cycle benchmarking, and we find the fidelity is limited by incoherent errors.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Microwave-activated conditional-phase gate for superconducting qubits
    Chow, Jerry M.
    Gambetta, Jay M.
    Cross, Andrew W.
    Merkel, Seth T.
    Rigetti, Chad
    Steffen, M.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [2] Tunable coupling of superconducting qubits
    Blais, A
    van den Brink, AM
    Zagoskin, AM
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (12)
  • [3] Hardware-Efficient Leakage-Reduction Scheme for Quantum Error Correction with Superconducting Transmon Qubits
    Battistel, F.
    Varbanov, B. M.
    Terhal, B. M.
    [J]. PRX QUANTUM, 2021, 2 (03):
  • [4] Microwave-activated Coupling Reaction on Polyethylene Glycol
    Min XIA
    [J]. Chinese Chemical Letters, 2002, (01) : 1 - 2
  • [5] Microwave-activated coupling reaction on polyethylene glycol
    Xia, M
    Wang, YG
    [J]. CHINESE CHEMICAL LETTERS, 2002, 13 (01) : 1 - 2
  • [6] Strong tunable coupling between two distant superconducting spin qubits
    Pita-Vidal, Marta
    Wesdorp, Jaap J.
    Splitthoff, Lukas J.
    Bargerbos, Arno
    Liu, Yu
    Kouwenhoven, Leo P.
    Andersen, Christian Kraglund
    [J]. NATURE PHYSICS, 2024, 20 (07) : 1158 - 1163
  • [7] Quantum coherent tunable coupling of superconducting qubits
    Niskanen, A. O.
    Harrabi, K.
    Yoshihara, F.
    Nakamura, Y.
    Lloyd, S.
    Tsai, J. S.
    [J]. SCIENCE, 2007, 316 (5825) : 723 - 726
  • [8] Coupler Microwave-Activated Controlled-Phase Gate on Fluxonium Qubits
    Simakov, Ilya A.
    Mazhorin, Grigoriy S.
    Moskalenko, Ilya N.
    Abramov, Nikolay N.
    Grigorev, Alexander A.
    Moskalev, Dmitry O.
    Pishchimova, Anastasiya A.
    Smirnov, Nikita S.
    V. Zikiy, Evgeniy
    Rodionov, Ilya A.
    Besedin, Ilya S.
    [J]. PRX QUANTUM, 2023, 4 (04):
  • [9] Microwave-induced coupling of superconducting qubits
    Paraoanu, G. S.
    [J]. PHYSICAL REVIEW B, 2006, 74 (14):
  • [10] Tunable coupling between three qubits as a building block for a superconducting quantum computer
    Groszkowski, Peter
    Fowler, Austin G.
    Motzoi, Felix
    Wilhelm, Frank K.
    [J]. PHYSICAL REVIEW B, 2011, 84 (14)