Quantum mechanics of a point particle in (2+1)-dimensional gravity

被引:139
|
作者
Matschull, HJ [1 ]
Welling, M [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3584 CC Utrecht, Netherlands
关键词
D O I
10.1088/0264-9381/15/10/008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the phase space structure and the quantization of a pointlike particle in (2 + 1)-dimensional gravity. By adding boundary terms to the first-order Einstein-Hilbert action, and removing all redundant gauge degrees of freedom, we arrive at a reduced action for a gravitating particle in 2+1 dimensions; which is invariant under Lorentz transformations and a group of generalized translations. The momentum space of the particle turns out to be the group manifold SL(2). Its position coordinates have non-vanishing Poisson brackets, resulting in a non-commutative quantum spacetime. We use the representation theory of SL(2) to investigate its structure. We find a discretization of time, and some semi-discrete structure of space. An uncertainty relation forbids a fully localized particle. The quantum dynamics is described by a discretized Klein-Gordon equation.
引用
收藏
页码:2981 / 3030
页数:50
相关论文
共 50 条
  • [1] Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity
    Bais, FA
    Muller, NM
    Schroers, BJ
    [J]. NUCLEAR PHYSICS B, 2002, 640 (1-2) : 3 - 45
  • [2] POINT PARTICLES AS DEFECTS IN (2+1)-DIMENSIONAL QUANTUM-GRAVITY
    FUJIWARA, Y
    HIGUCHI, S
    HOSOYA, A
    MISHIMA, T
    SIINO, M
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (04) : 867 - 872
  • [3] QUANTUM EFFECTS NEAR A POINT MASS IN (2+1)-DIMENSIONAL GRAVITY
    SOURADEEP, T
    SAHNI, V
    [J]. PHYSICAL REVIEW D, 1992, 46 (04): : 1616 - 1633
  • [4] 2+1 DIMENSIONAL QUANTUM-GRAVITY
    NELSON, JE
    REGGE, T
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (11-12): : 2091 - 2096
  • [5] Quantum holonomies in (2+1)-dimensional gravity
    Nelson, JE
    Picken, RF
    [J]. PHYSICS LETTERS B, 2000, 471 (04) : 367 - 372
  • [6] Classical and quantum solutions of 2+1 dimensional gravity
    Kenmoku, M
    Matsuyama, T
    Sato, R
    Uchida, S
    [J]. FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 161 - 167
  • [7] Quantum modular group in (2+1)-dimensional gravity
    Carlip, S
    Nelson, JE
    [J]. ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 1999, 10 (04): : 361 - 367
  • [8] Spacetime singularities in (2+1)-dimensional quantum gravity
    Minassian, E
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (23) : 5877 - 5900
  • [9] Causal diamonds in (2+1)-dimensional quantum gravity
    Andrade e Silva, Rodrigo
    Jacobson, Ted
    [J]. PHYSICAL REVIEW D, 2023, 107 (02)
  • [10] Quantum modular group in (2+1)-dimensional gravity
    Carlip, S
    Nelson, JE
    [J]. PHYSICAL REVIEW D, 1999, 59 (02)