Polarimetric SAR data classification using competitive neural networks

被引:23
|
作者
Ito, Y [1 ]
机构
[1] Takamatsu Natl Coll Technol, Dept Civil Engn, Kagawa 7618058, Japan
[2] Univ Osaka Prefecture, Coll Engn, Dept Comp Sci & Syst, Osaka 5998531, Japan
关键词
D O I
10.1080/014311698214442
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A classification method for polarimetric SAR data analysis using a competitive neural network is considered. The network is trained by two LVQ algorithms. In addition, a specific feature vector as the input for the network employing the JM distance is determined. As a result of experiments using SIR-C data, average accuracy for classification results was 86.40%, where (i) the competitive neural network with 8-input and 40-output neurons was trained by LVQ1 and LVQ2.1, and (ii) the 8-dimensional feature vector with backscattering coefficients (dB) and pseudo-relative phases between HH and VV from L and C bands was used. It is shown that the proposed method outperforms other methods in average accuracy.
引用
收藏
页码:2665 / 2684
页数:20
相关论文
共 50 条
  • [1] A polarimetric SAR data classification method using neural networks
    Ito, Y
    Omatu, S
    [J]. IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1790 - 1792
  • [2] Polarimetric SAR data classification using scattering models and neural networks
    Ito, Y
    Omatu, S
    [J]. IMAGE PROCESSING, SIGNAL PROCESSING, AND SYNTHETIC APERTURE RADAR FOR REMOTE SENSING, 1997, 3217 : 132 - 140
  • [3] Unsupervised classification of polarimetric SAR images using neural networks
    Yahia, M
    Belhadj, Z
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 203 - 205
  • [4] Classification of polarimetric SAR images using compact convolutional neural networks
    Ahishali, Mete
    Kiranyaz, Serkan
    Ince, Turker
    Gabbouj, Moncef
    [J]. GISCIENCE & REMOTE SENSING, 2021, 58 (01) : 28 - 47
  • [5] Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks
    Zhou, Yu
    Wang, Haipeng
    Xu, Feng
    Jin, Ya-Qiu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1935 - 1939
  • [6] Polarimetric SAR image classification based on polarimetric decomposition and neural networks theory
    Luo, Huanmin
    Tong, Ling
    Li, Xiaowen
    Chen, Yan
    Liu, Xiaofang
    Li, Min
    Zhang, Ying
    [J]. MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [7] Self-organizing neural networks for unsupervised classification of polarimetric SAR data on complex landscapes
    Putignano, C.
    Schiavon, G.
    Solimini, D.
    Trisasongko, B.
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 504 - +
  • [8] Classification of river ice using polarimetric SAR data
    Mermoz, S.
    Allain, S.
    Bernier, M.
    Pottier, E.
    Gherboudj, I.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2009, 35 (05) : 460 - 473
  • [9] Classification of polarimetric SAR data using dictionary learning
    Vestergaard, Jacob S.
    Dahl, Anders L.
    Larsen, Rasmus
    Nielsen, Allan A.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVIII, 2012, 8537
  • [10] Classification using polarimetric and interferometric SAR-data
    Hellmann, M
    Cloude, SR
    Papathanassiou, KP
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1411 - 1413