Mode-coupling approach to polymer diffusion in an unentangled melt. I. The effect of density fluctuations

被引:22
|
作者
Farago, J. [1 ]
Semenov, A. N. [1 ]
Meyer, H. [1 ]
Wittmer, J. P. [1 ]
Johner, A. [1 ]
Baschnagel, J. [1 ]
机构
[1] Univ Strasbourg, CNRS UPR22, Inst Charles Sadron, F-67034 Strasbourg 2, France
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 05期
关键词
COMPUTER-SIMULATIONS; CHAIN DYNAMICS; ROUSE; POLYISOPRENE; CROSSOVER; SYSTEMS; TIME;
D O I
10.1103/PhysRevE.85.051806
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We quantitatively assess the effect of density fluctuation modes on the dynamics of a tagged polymer in an unentangled melt. To this end, we develop a density-based mode-coupling theory (dMCT) using the Mori-Zwanzig approach and projecting the fluctuating force onto pair-density fluctuation modes. The effect of dynamical density fluctuations on the center-of-mass (c.m.) dynamics is also analyzed based on a perturbative approach and we show that dMCT and perturbation techniques yield identical results. The c. m. velocity autocorrelation function (c. m. VAF) exhibits a slow power law relaxation in the time range between the monomer time t(1) and the Rouse relaxation time t(N). We obtain an analytical expression for the c. m. VAF in terms of molecular parameters. In particular, the c. m. VAF scales as -N(-1)t(-5/4) (where N is the number of monomer units per chain) in the relevant time regime. The results are qualitatively accounted for by the dynamical correlation hole effect. The predicted -t(-5/4) dependence of the c. m. VAF is supported by data of non-momentum-conserving computer simulations. However, the comparison shows that the theory significantly underestimates the amplitude of the effect. This issue is discussed and an alternative approach is addressed in the second part of this series [Farago et al., Phys. Rev. E 85, 051807 (2012), the following paper].
引用
收藏
页数:14
相关论文
共 28 条
  • [1] Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions
    Farago, J.
    Meyer, H.
    Baschnagel, J.
    Semenov, A. N.
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [2] A mode-coupling approach to the attractive interaction effect on the solute diffusion in liquids
    Yamaguchi, T
    Matubayasi, N
    Nakahara, M
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (01): : 422 - 432
  • [3] Diffusion of nanoparticles in semidilute polymer solutions: A mode-coupling theory study
    Dong, Yunhong
    Feng, Xiaoqing
    Zhao, Nanrong
    Hou, Zhonghuai
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (02):
  • [4] Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity
    Libourel, G
    Marty, B
    Humbert, F
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (21) : 4123 - 4135
  • [5] ANALYSIS OF NONLINEAR MODE-COUPLING OF COSMOLOGICAL DENSITY-FLUCTUATIONS BY THE PSEUDOSPECTRAL METHOD
    GOUDA, N
    PROGRESS OF THEORETICAL PHYSICS, 1995, 94 (01): : 33 - 45
  • [6] Mode-coupling theory of self-diffusion in diblock copolymers - I. General derivation and qualitative predictions
    Guenza, M
    Tang, H
    Schweizer, KS
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (03): : 1257 - 1270
  • [7] MODE-COUPLING THEORY OF DIFFUSION IN BLOCK-COPOLYMER MELTS - INFLUENCE OF CONCENTRATION FLUCTUATIONS
    TANG, H
    SCHWEIZER, KS
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (14): : 6296 - 6299
  • [8] Mode-coupling theory for self-diffusion in polymer blends and blend solutions
    Tang, H
    Schweizer, KS
    JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (02): : 779 - 791
  • [9] Nanoparticle diffusion in polymer melts: Molecular dynamics simulations and mode-coupling theory
    Popova, Hristina
    Egorov, Sergei A.
    Milchev, Andrey
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (23):
  • [10] Anomalous nanoparticle diffusion in polymer solutions and melts: A mode-coupling theory study
    Egorov, S. A.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08):