Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries

被引:37
|
作者
He, Xin [1 ]
Wang, Jun [1 ]
Jia, Haiping [1 ]
Kloepsch, Richard [1 ]
Liu, Haidong [1 ]
Beltrop, Kolja [1 ]
Li, Jie [1 ]
机构
[1] Univ Munster, MEET Battery Res Ctr, Inst Phys Chem, D-48149 Munster, Germany
关键词
Ionic liquid; Solvothermal; Mn2O3; LiMn2O4; Li-ion battery; Environmentally friendly; MOLTEN-SALT METHOD; SPINEL LIMN2O4; HIGH-POWER; ELECTROCHEMICAL PERFORMANCE; RATE CAPABILITY; LITHIUM; MICROSPHERES; ELECTRODE; NANORODS;
D O I
10.1016/j.jpowsour.2015.04.106
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mn-based Mn2O3 anode and LiMn2O4 cathode materials are prepared by a solvothermal method combined with post annealing process. Environmentally friendly ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate as both structure-directing agent and fluorine source is used to prepare hollow polyhedron MnF2 precursor. Both target materials Mn2O3 anode and LiMn2O4 cathode have the morphology of the MnF2 precursor. The Mn2O3 anode using carboxymethyl cellulose as binder could deliver slight better electrochemical performance than the one using poly (vinyldifluoride) as binder. The former has an initial charge capacity of 800 mAh g(-1) at a current density of 101.8 mA g(-1), and exhibits no obvious capacity decay for 150 cycles at 101.8 mA g(-1). The LiMn2O4 cathode material prepared with molten salt assistant could display much better electrochemical performance than the one prepared without molten salt assistance. In particular, it has an initial discharge capacity of 117.5 mAh g(-1) at a current density of 0.5C and good rate capability. In the field of lithium ion batteries, both the Mn2O3 anode and LiMn2O4 cathode materials could exhibit enhanced electrochemical performance due to the well formed morphology based on the ionic liquid-assisted solvothermal method. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:306 / 311
页数:6
相关论文
共 50 条
  • [1] Optimized synthesis of LiMn2O4 cathode materials for Li-ion batteries
    Li, ZM
    Qiu, WH
    Hu, HY
    Zhao, HL
    Gao, CH
    JOURNAL OF INORGANIC MATERIALS, 2004, 19 (02) : 342 - 348
  • [2] Synthesis of LiMn2O4 as cathode material for Li-ion batteries
    Liu, Guang-Ming
    Li, Mei-Shuan
    Gao, Hong
    Zeng, Chao-Liu
    Qian, Yu-Hai
    Dianyuan Jishu/Chinese Journal of Power Sources, 2002, 26 (01):
  • [3] Hydrothermal synthesis of hollow Mn2O3 nanocones as anode material for Li-ion batteries
    Dai, Yihui
    Jiang, Hao
    Hu, Yanjie
    Li, Chunzhong
    RSC ADVANCES, 2013, 3 (43) : 19778 - 19781
  • [4] Surfactant-assisted crystallization of porous Mn2O3 anode materials for Li-ion batteries
    Li, Keyan
    Shua, Fenfen
    Guo, Xinwen
    Xue, Dongfeng
    CRYSTENGCOMM, 2015, 17 (27): : 5094 - 5100
  • [6] Synthesis and electrochemical performance of YF3-coated LiMn2O4 cathode materials for Li-ion batteries
    Jina Cao
    Gaoshao Cao
    Hongming Yu
    Jian Xie
    Xinbing Zhao
    Rare Metals, 2011, 30 : 39 - 43
  • [7] Synthesis and electrochemical performance of YF3-coated LiMn2O4 cathode materials for Li-ion batteries
    Cao Jina
    Cao Gaoshao
    Yu Hongming
    Xie Jian
    Zhao Xinbing
    RARE METALS, 2011, 30 (01) : 39 - 43
  • [8] LiMn2O4 microspheres as high-performance cathode materials for Li-ion batteries
    Zheng, Hao
    Wang, Ting
    Zhao, Rongfei
    Chen, Jinsong
    Li, Lin
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [9] LiMn2O4 spinel structure as cathode material for Li-ion batteries
    Sharma, Rahul
    Nihal
    Sharma, Mamta
    ADVANCES IN BASIC SCIENCES (ICABS 2019), 2019, 2142
  • [10] Synthesis and characterization of Sn-doped LiMn2O4 cathode materials for rechargeable Li-ion batteries
    Guo, Shaohua
    Zhang, Shichao
    He, Xiangming
    Pu, Weihua
    Jiang, Changyin
    Wan, Chunrong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (10) : A760 - A763