TOPOLOGICAL ASYMPTOTIC ANALYSIS OF THE KIRCHHOFF PLATE BENDING PROBLEM

被引:18
|
作者
Amstutz, Samuel [1 ]
Novotny, Antonio A. [2 ]
机构
[1] Fac Sci, Lab Anal Non Lineaire & Geometrie, F-84000 Avignon, France
[2] Lab Nacl Comp Cient LNCC MCT Coordenacao Matemat, BR-25651075 Petropolis, RJ, Brazil
关键词
Topological sensitivity; topological derivative; topology optimization; Kirchhoff plates; LEVEL-SET METHOD; SENSITIVITY-ANALYSIS; SHAPE; OPTIMIZATION;
D O I
10.1051/cocv/2010010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed for a wide range of second-order differential operators. Since we are dealing here with a forth-order operator, we perform a complete mathematical analysis of the problem.
引用
收藏
页码:705 / 721
页数:17
相关论文
共 50 条
  • [1] A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate
    Guo, Hongwei
    Zhuang, Xiaoying
    Rabczuk, Timon
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 59 (02): : 433 - 456
  • [3] Topological asymptotic analysis for tumor identification problem
    Chorfi, Nejmeddine
    Ghezaiel, Emna
    Hassine, Maatoug
    ASYMPTOTIC ANALYSIS, 2021, 123 (3-4) : 317 - 333
  • [4] A curved quadrilateral Kirchhoff plate bending element
    Meghre, A.S.
    Kadam, K.N.
    Journal of the Institution of Engineers (India): Civil Engineering Division, 2001, 82 (AUGUST): : 112 - 118
  • [5] TREFFTZ METHOD FOR KIRCHHOFF PLATE BENDING PROBLEMS
    JIN, WG
    CHEUNG, YK
    ZIENKIEWICZ, OC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (05) : 765 - 781
  • [6] A meshless method for Kirchhoff plate bending problems
    Leitao, VMA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 52 (10) : 1107 - 1130
  • [7] Refined triangular discrete Kirchhoff plate element for thin plate bending, vibration and buckling analysis
    Chen, WJ
    Cheung, YK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1998, 41 (08) : 1507 - 1525
  • [8] Matched asymptotic solution to a class of singularly perturbed thin plate bending problem
    Xu Hui
    Chen Li-Hua
    Mo Jia-Qi
    ACTA PHYSICA SINICA, 2011, 60 (10)
  • [9] Topological asymptotic analysis of a diffusive–convective–reactive problem
    Ruscheinsky, Dirlei
    Carvalho, Fernando
    Anflor, Carla
    Novotny, Andre Antonio
    Novotny, Andre Antonio (novotny@lncc.br), 1600, Emerald Group Holdings Ltd. (38): : 477 - 500
  • [10] AN EFFICIENT HYBRID QUADRILATERAL KIRCHHOFF PLATE BENDING ELEMENT
    SZE, KY
    CHOW, CL
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 32 (01) : 149 - 169