Application of the multifractal microcanonical formalism to the detection of fire plumes in NOAA-AVHRR data

被引:1
|
作者
Yahia, H. [1 ]
Turiel, A. [2 ]
Chrysoulakis, N.
Grazzini, J. [4 ]
Prastacos, P. [3 ]
Herlin, I. [1 ]
机构
[1] INRIA, F-78153 Le Chesnay, France
[2] CSIC, Inst Ciencias Mar, CMIMA, E-08003 Barcelona, Spain
[3] Forth IACM RAD, GR-71110 Iraklion, Crete, Greece
[4] IES SDI, EC DG JRC, I-21020 Ispra, Italy
关键词
D O I
10.1080/01431160701840174
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article it is shown that the multifractal microcanonical formalism (herein referred to as MMF) has strong potential for bringing new solutions to a known problem in the analysis of some remotely sensed datasets: the determination of fire plumes in NOAA-AVHRR data. It has been proven that NOAA-AVHRR data can be used to detect plumes caused by fire accidents of different kinds. This work builds on previous studies and uses the MMF to introduce novel methods for the determination of plumes. The MMF can be used to derive geometrical superstructures (like certain multifractal topological manifolds and most importantly the so-called reduced signals) that are able to deal with the multiscale properties of turbulent geophysical fluid flows. These multiscale properties make use of the spatial distribution of grey-level values in the datasets and they are used in conjunction with previous pixel-based descriptors to enhance the determination of plume pixels.
引用
收藏
页码:4189 / 4205
页数:17
相关论文
共 50 条
  • [1] Contextual algorithm adapted for NOAA-AVHRR fire detection in Indonesia
    Nakayama, M
    Maki, M
    Elvidge, CD
    Liew, SC
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (17) : 3415 - 3421
  • [2] EVALUATION OF NOAA-AVHRR DATA FOR CROP ASSESSMENT
    DUGGIN, MJ
    PIWINSKI, D
    WHITEHEAD, V
    RYLAND, G
    APPLIED OPTICS, 1982, 21 (11): : 1873 - 1875
  • [3] Application of the microcanonical multifractal formalism to monofractal systems
    Pont, Oriol
    Turiel, Antonio
    Perez-Vicente, Conrad J.
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [4] Program to process NOAA-AVHRR data on personal computers
    Zakharov, M.Yu.
    Lupyan, E.A.
    Mazurov, A.A.
    Soviet Journal of Remote Sensing (English translation of Issledovanie Zemli iz Kosmosa), 1994, 11 (04):
  • [5] Use of mixels in classification algorithm for NOAA-AVHRR data
    Department of Computer Science and Engineering, Faculty of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuen, Akita 010-8502, Japan
    Kyokai Joho Imeji Zasshi, 2009, 3 (339-348):
  • [6] NOAA-AVHRR data processing for the mapping of vegetation cover
    Shimabukuro, YE
    Carvalho, VC
    Rudorff, BFT
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (03) : 671 - 677
  • [7] Thermal inertia mapping from NOAA-AVHRR data
    Advances in Space Research, 22 (05): : 655 - 667
  • [8] The application of a genetic algorithm for crop model steering using NOAA-AVHRR data
    de Wit, AJW
    REMOTE SENSING FOR EARTH SCIENCE, OCEAN, AND SEA ICE APPLICATIONS, 1999, 3868 : 167 - 181
  • [9] Thermal inertia mapping from NOAA-AVHRR data
    Sobrino, JA
    El Kharraz, MH
    Cuenca, J
    Raissouni, N
    SYNERGISTIC USE OF MULTISENSOR DATA FOR LAND PROCESSES, 1998, 22 (05): : 655 - 667
  • [10] PROGRAM TO PROCESS NOAA-AVHRR DATA ON PERSONAL COMPUTERS
    ZAKHAROV, MY
    LUPYAN, EA
    MAZUROV, AA
    SOVIET JOURNAL OF REMOTE SENSING, 1994, 11 (04): : 649 - 660