The Periplectic Brauer Algebra III: The Deligne Category

被引:7
|
作者
Coulembier, Kevin [1 ]
Ehrig, Michael [2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100488, Fangshan Distri, Peoples R China
基金
澳大利亚研究理事会;
关键词
Deligne category; Thick tensor ideals; Periplectic Lie superalgebra; Categorification; Diagram algebras; Temperley-Lieb algebra; Fock space; REPRESENTATIONS; FUNCTORS; IDEALS;
D O I
10.1007/s10468-020-09976-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a faithful categorical representation of an infinite Temperley-Lieb algebra on the periplectic analogue of Deligne's universal monoidal category. We use the corresponding combinatorics to classify thick tensor ideals in this periplectic Deligne category. This allows us to determine the objects in the kernel of the monoidal functor going to the module category of the periplectic Lie supergroup. We use this to classify indecomposable direct summands in the tensor powers of the natural representation, determine which are projective and determine their simple top.
引用
收藏
页码:993 / 1027
页数:35
相关论文
共 50 条
  • [1] The Periplectic Brauer Algebra III: The Deligne Category
    Kevin Coulembier
    Michael Ehrig
    Algebras and Representation Theory, 2021, 24 : 993 - 1027
  • [2] The periplectic Brauer algebra
    Coulembier, Kevin
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 : 441 - 482
  • [3] The periplectic q-Brauer category
    Rui, Hebing
    Song, Linliang
    JOURNAL OF ALGEBRA, 2025, 661 : 82 - 122
  • [4] The periplectic Brauer algebra II: Decomposition multiplicities
    Coulembier, Kevin
    Ehrig, Michael
    JOURNAL OF COMBINATORIAL ALGEBRA, 2018, 2 (01) : 19 - 46
  • [5] The blocks of the periplectic Brauer algebra in positive characteristic
    Barbier, Sigiswald
    Cox, Anton
    De Visscher, Maud
    JOURNAL OF ALGEBRA, 2019, 534 : 289 - 312
  • [6] Affine periplectic Brauer algebras
    Chen, Chih-Whi
    Peng, Yung-Ning
    JOURNAL OF ALGEBRA, 2018, 501 : 345 - 372
  • [7] DELIGNE CATEGORIES AND THE PERIPLECTIC LIE SUPERALGEBRA
    Entova-Aizenbud, Inna
    Serganova, Vera
    MOSCOW MATHEMATICAL JOURNAL, 2021, 21 (03) : 507 - 565
  • [8] THE GRADED CENTER OF THE STABLE CATEGORY OF A BRAUER TREE ALGEBRA
    Kessar, Radha
    Linckelmann, Markus
    QUARTERLY JOURNAL OF MATHEMATICS, 2010, 61 (03): : 337 - 349
  • [9] Parabolic Category for Periplectic Lie Superalgebras
    Chen, Chih-Whi
    Peng, Yung-Ning
    TRANSFORMATION GROUPS, 2024, 29 (01) : 17 - 45
  • [10] Parabolic Category for Periplectic Lie Superalgebras
    Chih-Whi Chen
    Yung-Ning Peng
    Transformation Groups, 2024, 29 : 17 - 45