Some questions of uniqueness for extremal quasiconformal mappings

被引:0
|
作者
Reich, Edgar [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
extremal quasiconformal mappings; uniqueness;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each simply connected region Omega, we define a number h(Omega), 0 <= h(Omega) <= infinity, in terms of the family of holomorphic functions of class L-1 in Omega. It is known that the affine stretch of Omega is uniquely extremal if and only if h(Omega) = 0. We introduce a possible approach to estimating h(Omega) from below by solving a first-order partial differential equation, and illustrate it to give a new proof that h(Omega) = infinity for the case when Omega is a parabola.
引用
收藏
页码:317 / 323
页数:7
相关论文
共 50 条
  • [1] Some results on extremal quasiconformal mappings
    Wu, SJ
    [J]. FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS, 2000, 214 : 591 - 603
  • [2] On the extremal sets of extremal quasiconformal mappings
    Zemin Zhou
    Jixiu Chen
    Zongxin Yang
    [J]. Science in China Series A: Mathematics, 2003, 46 (4): : 552 - 561
  • [3] On the extremal sets of extremal quasiconformal mappings
    Zhou, ZM
    Chen, JX
    Yang, ZX
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (04): : 552 - 561
  • [4] On the extremal sets of extremal quasiconformal mappings
    周泽民
    陈纪修
    杨宗信
    [J]. Science China Mathematics, 2003, (04) : 552 - 561
  • [5] On the extremal sets of extremal quasiconformal mappings
    周泽民
    陈纪修
    杨宗信
    [J]. Science in China,SerA., 2003, Ser.A.2003 (04) : 552 - 561
  • [6] SOME EXTREMAL PROBLEMS IN CLASS OF MAPPINGS QUASICONFORMAL IN MEAN
    BILUTA, PA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1964, 155 (03): : 503 - &
  • [7] DILATATION OF EXTREMAL QUASICONFORMAL MAPPINGS
    HARRINGTON, A
    ORTEL, M
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A633 - A633
  • [8] An extremal problem of quasiconformal mappings
    Li, Z
    Wu, SJ
    Zhou, ZM
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (11) : 3283 - 3288
  • [9] A CLASS OF EXTREMAL QUASICONFORMAL MAPPINGS
    KRUSHKAL, SL
    [J]. DOKLADY AKADEMII NAUK SSSR, 1968, 179 (05): : 1042 - &
  • [10] QUASICONFORMAL MAPPINGS + EXTREMAL LENGTHS
    RENGGLI, H
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) : 63 - &