Discrete cosine transforms on quantum computers

被引:54
|
作者
Klappenecker, A [1 ]
Rötteler, M [1 ]
机构
[1] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
关键词
D O I
10.1109/ISPA.2001.938674
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A classical computer does not allow to calculate a discrete cosine transform on N points in less than linear time. This trivial lower bound is no longer valid for a computer that takes advantage of quantum mechanical superposition, entanglement, and interference principles. In fact, we show that it is possible to realize the discrete cosine transforms and the discrete sine transforms of size N x N and types I,II,III, and IV with as little as O(log(2) N) operations on a quantum computer, whereas the known fast algorithms on a classical computer need O (N log N) operations.
引用
下载
收藏
页码:464 / 468
页数:5
相关论文
共 50 条
  • [1] ON THE MULTIPLICATIVE COMPLEXITY OF DISCRETE COSINE TRANSFORMS
    FEIG, E
    WINOGRAD, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (04) : 1387 - 1391
  • [2] DIAGONALIZING PROPERTIES OF THE DISCRETE COSINE TRANSFORMS
    SANCHEZ, V
    GARCIA, P
    PEINADO, AM
    SEGURA, JC
    RUBIO, AJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (11) : 2631 - 2641
  • [3] On pruning the discrete cosine and sine transforms
    Stasinski, R
    MELECON 2004: PROCEEDINGS OF THE 12TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1-3, 2004, : 269 - 271
  • [4] The discrete fractional cosine and sine transforms
    Pei, SC
    Yeh, MH
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (06) : 1198 - 1207
  • [5] THE MULTIPLICATIVE COMPLEXITY OF DISCRETE COSINE TRANSFORMS
    FEIG, E
    LINZER, E
    ADVANCES IN APPLIED MATHEMATICS, 1992, 13 (04) : 494 - 503
  • [6] Binary Discrete Cosine and Hartley Transforms
    Bouguezel, Saad
    Ahmad, M. Omair
    Swamy, M. N. S.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (04) : 989 - 1002
  • [7] ON COMPUTING THE DISCRETE FOURIER AND COSINE TRANSFORMS
    WANG, ZD
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (05): : 1341 - 1344
  • [8] The discrete fractional random cosine and sine transforms
    Liu, Zhenjun
    Guo, Qing
    Liu, Shutian
    OPTICS COMMUNICATIONS, 2006, 265 (01) : 100 - 105
  • [9] ON THE COMPUTATION OF RUNNING DISCRETE COSINE AND SINE TRANSFORMS
    MURTHY, NR
    SWAMY, MNS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (06) : 1430 - 1437
  • [10] Supercharacters and the discrete Fourier, cosine, and sine transforms
    Garcia, Stephan Ramon
    Yih, Samuel
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (09) : 3745 - 3765