APPLICATION OF COMPETITIVE HOPFIELD NEURAL NETWORK TO BRAIN-COMPUTER INTERFACE SYSTEMS

被引:51
|
作者
Hsu, Wei-Yen [1 ]
机构
[1] Taipei Med Univ, Grad Inst Biomed Informat, Taipei 110, Taiwan
关键词
Brain-computer interface (BCI); electroencephalogram (EEG); motor imagery (MI); wavelet transform; fractal dimension (FD); competitive Hopfield neural network (CHNN); PARTICLE SWARM OPTIMIZATION; ACTIVE SEGMENT SELECTION; EEG-BASED DIAGNOSIS; SEIZURE DETECTION; FRACTAL FEATURES; CLASSIFICATION; SYNCHRONIZATION; PREDICTION; FUZZY; METHODOLOGY;
D O I
10.1142/S0129065712002979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an unsupervised recognition system for single-trial classification of motor imagery (MI) electroencephalogram (EEG) data in this study. Competitive Hopfield neural network (CHNN) clustering is used for the discrimination of left and right MI EEG data posterior to selecting active segment and extracting fractal features in multi-scale. First, we use continuous wavelet transform (CWT) and Student's two-sample t-statistics to select the active segment in the time-frequency domain. The multiresolution fractal features are then extracted from wavelet data by means of modified fractal dimension. At last, CHNN clustering is adopted to recognize extracted features. Due to the characteristic of nonsupervision, it is proper for CHNN to classify non-stationary EEG signals. The results indicate that CHNN achieves 81.9% in average classification accuracy in comparison with self-organizing map (SOM) and several popular supervised classifiers on six subjects from two data sets.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 50 条
  • [1] Application of Neural Network to Brain-Computer Interface
    Hsu, Wei-Yen
    Chiang, I-Jen
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 163 - 168
  • [2] Brain-Computer Interface Using Deep Neural Network and Its Application to Mobile Robot Control
    Huve, Gauvain
    Takahashi, Kazuhiko
    Hashimoto, Masafumi
    [J]. 2018 IEEE 15TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2018, : 169 - 174
  • [3] EEG denoising with a Recurrent Quantum Neural Network for a Brain-Computer Interface
    Gandhi, Vaibhav
    Arora, Vipul
    Behera, Laxmidhar
    Prasad, Girijesh
    Coyle, Damien
    McGinnity, T. M.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 1583 - 1590
  • [4] Portable brain-computer interface based on novel convolutional neural network
    Zhang, Yu
    Zhang, Xiong
    Sun, Han
    Fan, Zhaowen
    Zhong, Xuefei
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 107 : 248 - 256
  • [5] A fresh look at functional link neural network for brain-computer interface
    Hettiarachchi, Imali T.
    Babaei, Toktam
    Thanh Nguyen
    Lim, Chee P.
    Nahavandi, Saeid
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2018, 305 : 28 - 35
  • [6] Rehabilitation with Brain-Computer Interface Systems
    Pfurtscheller, Gert
    Mueller-Putz, Gernot R.
    Scherer, Reinhold
    Neuper, Christa
    [J]. COMPUTER, 2008, 41 (10) : 58 - +
  • [7] The application of artificial intelligence in brain-computer interface and neural system rehabilitation
    Xu, Fangzhou
    Ming, Dong
    Jung, Tzyy-Ping
    Xu, Peng
    Xu, Minpeng
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [8] Brain-computer interface paradigms and neural coding
    Tai, Pengrui
    Ding, Peng
    Wang, Fan
    Gong, Anmin
    Li, Tianwen
    Zhao, Lei
    Su, Lei
    Fu, Yunfa
    [J]. FRONTIERS IN NEUROSCIENCE, 2024, 17
  • [9] Neural mechanisms of brain-computer interface control
    Halder, S.
    Agorastos, D.
    Veit, R.
    Hammer, E. M.
    Lee, S.
    Varkuti, B.
    Bogdan, M.
    Rosenstiel, W.
    Birbaumer, N.
    Kuebler, A.
    [J]. NEUROIMAGE, 2011, 55 (04) : 1779 - 1790
  • [10] Application of Continuous Wavelet Transform and Convolutional Neural Network in Decoding Motor Imagery Brain-Computer Interface
    Lee, Hyeon Kyu
    Choi, Young-Seok
    [J]. ENTROPY, 2019, 21 (12)