Image Semantic Segmentation Method Based on Improved DeepLabv3

被引:0
|
作者
Cong, Xu [1 ]
Li, Wang [1 ]
机构
[1] Tianjin Chengjian Univ, Sch Comp & Informat Engn, Tianjin 300384, Peoples R China
关键词
image processing; improved DeepLabv3 + network; feature pyramid network; atrous spatial pyramid pooling module;
D O I
10.3788/LOP202158.1610008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an image semantic segmentation method based on an improved DeepLabv3+ network to address the DeepLab network's inability to fully utilize multiscale feature information while ignoring the problem of high-resolution shallow features and the loss of important pixel information due to excessive direct upsampling multiples. First, the multiscale feature information generated by the network is fully utilized and the feature pyramid network is used to effectively fuse high-resolution shallow features. Then, layer-by-layer upsampling is used to improve the image's pixel information continuity. Finally, in the atrous spatial pyramid pooling module, the standard convolution is replaced with depthwise separable convolution, enhancing the network model' s training efficiency. The experimental results on the semantic segmentation standard data set PASCAL VOC2012 verification set show that, the mean intersection over union of the method can reach 79. 97%. It can predict more refined semantic segmentation results compared with the DeepLab network.
引用
收藏
页数:8
相关论文
共 18 条
  • [1] Real-Time Semantic Segmentation Algorithm Based on Feature Fusion Technology
    Cai Yu
    Huang Xuegong
    Zhian, Zhang
    Zhu Xinnian
    Ma Xiang
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (02)
  • [2] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [3] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [4] Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
  • [5] Real-Time Semantic Segmentation Based on Dilated Convolution Smoothing and Lightweight Up-Sampling
    Cheng Xiaoyue
    Zhao Longzhang
    Hu Qiong
    Shi Jiapeng
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (02)
  • [6] Xception: Deep Learning with Depthwise Separable Convolutions
    Chollet, Francois
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1800 - 1807
  • [7] An Efficient Approach to Semantic Segmentation
    Csurka, Gabriela
    Perronnin, Florent
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 95 (02) : 198 - 212
  • [8] The PASCAL Visual Object Classes Challenge: A Retrospective
    Everingham, Mark
    Eslami, S. M. Ali
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) : 98 - 136
  • [9] Hariharan B, 2011, IEEE I CONF COMP VIS, P991, DOI 10.1109/ICCV.2011.6126343
  • [10] LeCun Y., 1995, HDB BRAIN THEORY NEU, V3361, P1995, DOI 10.5555/303568.303704