Equitable partitions into spanning trees in a graph

被引:0
|
作者
Fekete, Zsolt [1 ]
Szabo, Jacint [2 ,3 ]
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, Informat Lab, Data Min & Web Search Res Grp, H-1051 Budapest, Hungary
[2] Eotvos Lorand Univ, Inst Math, MTA ELTE Egervary Res Grp EGRES, H-1117 Budapest, Hungary
[3] IBM Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
关键词
disjoint spanning trees; base partitions of matroids;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first prove that if the edge set of an undirected graph is the disjoint union of two of its spanning trees, then for every subset P of edges there exists a spanning tree decomposition that cuts P into two (almost) equal parts. The main result of the paper is a further extension of this claim: If the edge set of a graph is the disjoint union of two of its spanning trees, then for every stable set of vertices of size 3, there exists such a spanning tree decomposition that cuts the stars of these vertices into (almost) equal parts. This result fails for 4 instead of 3. The proofs are elementary.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Looking for edge-equitable spanning trees
    Landete, Mercedes
    Marin, Alfredo
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2014, 41 : 44 - 52
  • [2] Locally constrained graph homomorphisms and equitable partitions
    Fiala, Jiri
    Paulusma, Daniel
    Telle, Jan Arne
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 850 - 880
  • [3] The number of spanning trees of a graph
    Kinkar C Das
    Ahmet S Cevik
    Ismail N Cangul
    [J]. Journal of Inequalities and Applications, 2013
  • [4] The number of spanning trees of a graph
    Das, Kinkar C.
    Cevik, Ahmet S.
    Cangul, Ismail N.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [5] The number of spanning trees of a graph
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (03) : 286 - 290
  • [6] SPANNING TREE METHODS FOR SAMPLING GRAPH PARTITIONS
    Claremont McKenna College, Claremont
    CA, United States
    不详
    MA, United States
    不详
    GA, United States
    [J]. arXiv,
  • [7] On multi-consensus and almost equitable graph partitions
    Monaco, Salvatore
    Celsi, Lorenzo Ricciardi
    [J]. AUTOMATICA, 2019, 103 : 53 - 61
  • [8] BLIND EXTRACTION OF EQUITABLE PARTITIONS FROM GRAPH SIGNALS
    Scholkemper, Michael
    Schaub, Michael T.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5832 - 5836
  • [9] PERFECT STATE TRANSFER, GRAPH PRODUCTS AND EQUITABLE PARTITIONS
    Ge, Yang
    Greenberg, Benjamin
    Perez, Oscar
    Tamon, Christino
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 (03) : 823 - 842
  • [10] HOMOLOGY THEORY FOR SPANNING TREES OF A GRAPH
    LOVASZ, L
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 30 (3-4): : 241 - 251