Alternating paths and cycles of minimum length

被引:3
|
作者
Evans, W. [1 ]
Liotta, G. [2 ]
Meijer, H. [3 ]
Wismath, S. [4 ]
机构
[1] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada
[2] Univ Perugua, Perugia, Italy
[3] UC Roosevelt, Middelburg, Netherlands
[4] Univ Lethbridge, Lethbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Alternating paths/cycles; Colored points; STRAIGHT-LINE EMBEDDINGS; DRAWING COLORED GRAPHS; 2; SETS; POINTS; TREES;
D O I
10.1016/j.comgeo.2016.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a set of n red points and B be a set of n blue points in the Euclidean plane. We study the problem of computing a planar drawing of a cycle of minimum length that contains vertices at points R boolean OR B and alternates colors. When these points are collinear, we describe a Theta(n log n)-time algorithm to find such a shortest alternating cycle where every edge has at most two bends. We extend our approach to compute shortest alternating paths in O (n(2)) time with two bends per edge and to compute shortest alternating cycles on 3-colored point sets in O (n(2)) time with O (n) bends per edge. We also prove that for arbitrary k-colored point sets, the problem of computing an alternating shortest cycle is NP-hard, where k is any positive integer constant. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:124 / 135
页数:12
相关论文
共 50 条
  • [1] Alternating Paths and Cycles of Minimum Length
    Evans, William S.
    Liotta, Giuseppe
    Meijer, Henk
    Wismath, Stephen
    [J]. GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2015, 2015, 9411 : 383 - 394
  • [2] A Theory of Alternating Paths and Blossoms from the Perspective of Minimum Length
    Vazirani, Vijay V.
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (03) : 2009 - 2047
  • [3] On Hamiltonian alternating cycles and paths
    Claverol, Merce
    Garcia, Alfredo
    Garijo, Delia
    Seara, Carlos
    Tejel, Javier
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 68 : 146 - 166
  • [4] MINIMUM DEGREES FOR POWERS OF PATHS AND CYCLES
    Hng, Eng Keat
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (04) : 2667 - 2736
  • [5] On Relative Length of Longest Paths and Cycles
    Ozeki, Kenta
    Tsugaki, Masao
    Yamashita, Tomoki
    [J]. JOURNAL OF GRAPH THEORY, 2009, 62 (03) : 279 - 291
  • [6] Finding paths and cycles of superpolylogarithmic length
    Gabow, Harold N.
    [J]. SIAM JOURNAL ON COMPUTING, 2007, 36 (06) : 1648 - 1671
  • [7] MINIMUM DEGREE CONDITIONS FOR POWERS OF CYCLES AND PATHS
    Hng, Eng Keat
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 795 - 800
  • [8] Transitivity on Minimum Dominating Sets of Paths and Cycles
    Hernandez-Gomez, Juan C.
    Reyna-Hernandez, Gerardo
    Romero-Valencia, Jesus
    Rosario Cayetano, Omar
    [J]. SYMMETRY-BASEL, 2020, 12 (12): : 1 - 12
  • [9] M-alternating Hamilton paths and M-alternating Hamilton cycles
    Zhang, Zan-Bo
    Li, Yueping
    Lou, Dingjun
    [J]. DISCRETE MATHEMATICS, 2009, 309 (10) : 3385 - 3392
  • [10] Relative length of longest paths and cycles in graphs
    Liu, Huiqing
    Lu, Mei
    Tian, Feng
    [J]. GRAPHS AND COMBINATORICS, 2007, 23 (04) : 433 - 443