ISOPERIMETRIC INEQUALITIES FOR POINCARE DUALITY GROUPS

被引:1
|
作者
Kielak, Dawid [1 ]
Kropholler, Peter [2 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[2] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
基金
欧洲研究理事会;
关键词
CONVERGENCE GROUPS; INFINITE INDEX; SUBGROUPS;
D O I
10.1090/proc/15596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every oriented n-dimensional Poincare duality group over a *-ring R is amenable or satisfies a linear homological isoperimetric inequality in dimension n - 1. As an application, we prove the Tits alternative for such groups when n = 2. We then deduce a new proof of the fact that when n = 2 and R = Z then the group in question is a surface group.
引用
收藏
页码:4685 / 4698
页数:14
相关论文
共 50 条