Asymptotic behavior of Bayes estimates under possibly incorrect models

被引:0
|
作者
Bunke, O
Milhaud, X
机构
[1] Humboldt Univ, Math Inst, D-10099 Berlin, Germany
[2] Univ Toulouse 3, F-31062 Toulouse, France
来源
ANNALS OF STATISTICS | 1998年 / 26卷 / 02期
关键词
consistency; asymptotic normality; incorrect parametric models; inconsistent Bayes estimates;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the posterior distribution in a possibly incorrect parametric model a.s. concentrates in a strong sense on the set of pseudotrue parameters determined by the true distribution. As a consequence, we obtain in the case of a unique pseudotrue parameter the strong consistency of pseudo-Bayes estimators w.r.t. general loss functions. Further, we present a simple example based on normal distributions and having two different pseudotrue parameters, where pseudo-Bayes estimators have an essentially different asymptotic behavior than the pseudomaximum likelihood estimator. While the MLE is strongly consistent, the sequence of posterior means is strongly inconsistent and a.s. almost all its accumulation points are not pseudotrue. Finally, we give conditions under which a pseudo-Bayes estimator for a unique pseudotrue parameter has an asymptotic normal distribution.
引用
收藏
页码:617 / 644
页数:28
相关论文
共 50 条