Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube

被引:51
|
作者
Vajravelu, Kuppalapalle [1 ]
Sreenadh, Sreedharamalle [2 ]
Devaki, Palluru [2 ]
Prasad, Kerehalli V. [3 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] Sri Venkateswara Univ, Dept Math, Tirupati 517502, AP, India
[3] Banaglore Univ, Dept Math, Bangalore 560001, Karnataka, India
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2011年 / 9卷 / 05期
关键词
Herschel-Bulkley fluid; non-Newtonian fluid; blood flow; elastic tube; fluid flux; BLOOD-FLOW;
D O I
10.2478/s11534-011-0034-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The constitution of blood demands a yield stress fluid model, and among the available yield stress fluid models for blood flow, the Herschel-Bulkley model is preferred (because Bingham, Power-law and Newtonian models are its special cases). The Herschel-Bulkley fluid model has two parameters, namely the yield stress and the power law index. The expressions for velocity, plug flow velocity, wall shear stress, and the flux flow rate are derived. The flux is determined as a function of inlet, outlet and external pressures, yield stress, and the elastic property of the tube. Further when the power-law index n = 1 and the yield stress tau (0) -> 0, our results agree well with those of Rubinow and Keller [J. Theor. Biol. 35, 299 (1972)]. Furthermore, it is observed that, the yield stress and the elastic parameters (t (1) and t (2)) have strong effects on the flux of the non-Newtonian fluid flow in the elastic tube. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.
引用
收藏
页码:1357 / 1365
页数:9
相关论文
共 50 条
  • [1] Peristaltic Transport of a Herschel-Bulkley Fluid in an Elastic Tube
    Vajravelu, K.
    Sreenadh, S.
    Devaki, P.
    Prasad, K. V.
    [J]. HEAT TRANSFER-ASIAN RESEARCH, 2015, 44 (07): : 585 - 598
  • [2] Pulsatile flow of Herschel-Bulkley fluid through catheterized arteries - A mathematical model
    Sankar, D. S.
    Hemalatha, K.
    [J]. APPLIED MATHEMATICAL MODELLING, 2007, 31 (08) : 1497 - 1517
  • [3] Pulsatile flow of Herschel-Bulkley fluid through stenosed arteries - A mathematical model
    Sankar, D. S.
    Hemalatha, K.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2006, 41 (08) : 979 - 990
  • [4] Peristaltic transport of Herschel-Bulkley fluid in a non-uniform elastic tube
    Selvi, C. K.
    Srinivas, A. N. S.
    [J]. PROPULSION AND POWER RESEARCH, 2019, 8 (03) : 253 - 262
  • [5] MATHEMATICAL MODELING OF SWIRLING HERSCHEL-BULKLEY PSEUDOPLASTIC FLUID FLOW IN A CYLINDRICAL CHANNEL
    Matvienko, O., V
    Bazuev, V. P.
    Aseeva, A. E.
    [J]. JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2019, 92 (01) : 208 - 218
  • [6] Squeeze-flow of a Herschel-Bulkley fluid
    Sherwood, JD
    Durban, D
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1998, 77 (1-2) : 115 - 121
  • [7] Mathematical Simulation of the Swirling Flow of a Dilatant Herschel-Bulkley Fluid in a Cylindrical Channel
    Matvienko, O., V
    Bazuev, V. P.
    Aseeva, A. E.
    [J]. JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2019, 92 (06) : 1593 - 1602
  • [8] Peristaltic transport of a Herschel-Bulkley fluid in an inclined tube
    Vajravelu, K
    Sreenadh, S
    Babu, VR
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2005, 40 (01) : 83 - 90
  • [9] Fractal analysis of Herschel-Bulkley fluid flow in a capillary
    Yun Mei-Juan
    Zheng Wei
    Li Yun-Bao
    Li Yu
    [J]. ACTA PHYSICA SINICA, 2012, 61 (16)
  • [10] Flow behavior of Herschel-Bulkley fluid in a slot die
    Nagashima, Masayuki
    Hasegawa, Tomiichi
    Narumi, Takatsune
    [J]. NIHON REOROJI GAKKAISHI, 2006, 34 (04) : 213 - 221