Linear rotation-invariant coordinates for meshes

被引:229
|
作者
Lipman, Y [1 ]
Sorkine, O [1 ]
Levin, D [1 ]
Cohen-Or, D [1 ]
机构
[1] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
来源
ACM TRANSACTIONS ON GRAPHICS | 2005年 / 24卷 / 03期
关键词
rigid-motion invariant shape representation; local frames; mesh editing; shape blending;
D O I
10.1145/1073204.1073217
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce a rigid motion invariant mesh. representation based on discrete forms defined on the mesh. The reconstruction of mesh geometry from this representation requires solving two sparse linear systems that arise from the discrete forms: the first system defines the relationship between local frames on the mesh, and the second encodes the position of the vertices via the local frames. The reconstructed geometry is unique up to a rigid transformation of the mesh. We define surface editing operations by placing user-defined constraints on the local frames and the vertex positions. These constraints are incorporated in the two linear reconstruction systems, and their solution produces a deformed surface geometry that preserves the local differential properties in the least-squares sense. Linear combination of shapes expressed with our representation enables linear shape interpolation that correctly handles rotations. We demonstrate the effectiveness of the new representation with various detail-preserving editing operators and shape morphing.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 50 条
  • [1] Geometric optimization using nonlinear rotation-invariant coordinates
    Sassen, Josua
    Heeren, Behrend
    Hildebrandt, Klaus
    Rumpf, Martin
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2020, 77
  • [2] Rotation-invariant neoperceptron
    Fasel, Beat
    Gatica-Perez, Daniel
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 336 - +
  • [3] Rotation-Invariant HOG Descriptors Using Fourier Analysis in Polar and Spherical Coordinates
    Kun Liu
    Henrik Skibbe
    Thorsten Schmidt
    Thomas Blein
    Klaus Palme
    Thomas Brox
    Olaf Ronneberger
    [J]. International Journal of Computer Vision, 2014, 106 : 342 - 364
  • [4] Rotation-Invariant HOG Descriptors Using Fourier Analysis in Polar and Spherical Coordinates
    Liu, Kun
    Skibbe, Henrik
    Schmidt, Thorsten
    Blein, Thomas
    Palme, Klaus
    Brox, Thomas
    Ronneberger, Olaf
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 106 (03) : 342 - 364
  • [5] Rotation-invariant texture recognition
    Montoya-Zegarra, Javier A.
    Papa, Joao P.
    Leite, Neucimar J.
    Torres, Ricardo da Silva
    Falcao, Alexandre X.
    [J]. ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, PT 2, 2007, 4842 : 193 - +
  • [6] ROTATION-INVARIANT IMAGE CLASSIFICATION
    WERNICK, MN
    ISBERG, TA
    MORRIS, GM
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (13): : P86 - P86
  • [7] On the structure of rotation-invariant semigroups
    Sándor Jenei
    [J]. Archive for Mathematical Logic, 2003, 42 : 489 - 514
  • [8] On the structure of rotation-invariant semigroups
    Jenei, S
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2003, 42 (05) : 489 - 514
  • [9] Rotation-invariant photorefractive correlator
    Wen, ZQ
    Yang, XY
    [J]. PHOTOREFRACTIVE FIBER AND CRYSTAL DEVICES: MATERIALS, OPTICAL PROPERTIES, AND APPLICATIONS II, 1996, 2849 : 285 - 292
  • [10] A rotation-invariant pattern signature
    Simoncelli, EP
    [J]. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 185 - 188