Phase-controllable nonlocal spin polarization in proximitized nanowires

被引:7
|
作者
Zhang, X. P. [1 ,2 ]
Golovach, V. N. [1 ,2 ,3 ]
Giazotto, F. [4 ,5 ]
Bergeret, F. S. [1 ,2 ]
机构
[1] Donostia Int Phys Ctr DIPC, Manuel de Lardizabal 4, E-20018 San Sebastian, Spain
[2] Univ Basque Country, CSIC, Ctr Mixto, Ctr Fis Mat CFM MPC, E-20018 Donostia San Sebastian, Basque Country, Spain
[3] Basque Fdn Sci, Ikerbasque, E-48011 Bilbao, Spain
[4] CNR, NEST Ist Nanosci, I-56127 Pisa, Italy
[5] Scuola Normale Super Pisa, I-56127 Pisa, Italy
基金
欧盟地平线“2020”;
关键词
MAJORANA FERMIONS; SUPERCONDUCTOR; FIELD; SUPPRESSION; SIGNATURE; INAS;
D O I
10.1103/PhysRevB.101.180502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the magnetic and superconducting proximity effects in a semiconducting nanowire (NW) attached to superconducting leads and a ferromagnetic insulator (FI). We show that a sizable equilibrium spin polarization arises in the NW due to the interplay between the superconducting correlations and the exchange field in the FI. The resulting magnetization has a nonlocal contribution that spreads in the NW over the superconducting coherence length and is opposite in sign to the local spin polarization induced by the magnetic proximity effect in the normal state. For a Josephson-junction setup, we show that the nonlocal magnetization can be controlled by the superconducting phase bias across the junction. Our findings are relevant for the implementation of Majorana bound states in state-of-the-art hybrid structures.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses
    Yoshimine, Isao
    Satoh, Takuya
    Iida, Ryugo
    Stupakiewicz, Andrzej
    Maziewski, Andrzej
    Shimura, Tsutomu
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 116 (04)
  • [2] Phase-controllable laser thinning in MoTe2
    Kang, Seohui
    Won, Dongyeun
    Yang, Heejun
    Lin, Chia-Hsien
    Ku, Ching-Shun
    Chiang, Ching-Yu
    Kim, Sera
    Cho, Suyeon
    [J]. APPLIED SURFACE SCIENCE, 2021, 563
  • [3] 0-π phase-controllable thermal Josephson junction
    Fornieri A.
    Timossi G.
    Virtanen P.
    Solinas P.
    Giazotto F.
    [J]. Nature Nanotechnology, 2017, 12 (5) : 425 - 429
  • [4] 0-π phase-controllable thermal Josephson junction
    Fornieri, Antonio
    Timossi, Giuliano
    Virtanen, Pauli
    Solinas, Paolo
    Giazotto, Francesco
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (05) : 425 - 429
  • [5] Manipulation of microparticles using phase-controllable ultrasonic standing waves
    Courtney, C. R. P.
    Ong, C. -K.
    Drinkwater, B. W.
    Wilcox, P. D.
    Demore, C.
    Cochran, S.
    Glynne-Jones, P.
    Hill, M.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 128 (04): : E195 - E199
  • [6] Phase-controllable synthesis of cobalt hydroxide for electrocatalytic oxygen evolution
    Lyu, Fenglei
    Bai, Yaocai
    Wang, Qingfa
    Wang, Li
    Zhang, Xiangwen
    Yin, Yadong
    [J]. DALTON TRANSACTIONS, 2017, 46 (32) : 10545 - 10548
  • [7] Polarization-diversity silicon photonicMach-Zehnder delay interferometer for optical signal processing integrated with a phase-controllable polarization beam splitter
    Arai, Takahiro
    Uenohara, Hiroyuki
    [J]. IEICE ELECTRONICS EXPRESS, 2020, 17 (12):
  • [8] Nonlocal measurement of quasiparticle charge and energy relaxation in proximitized semiconductor nanowires using quantum dots
    Wang, Guanzhong
    Dvir, Tom
    van Loo, Nick
    Mazur, Grzegorz P.
    Gazibegovic, Sasa
    Badawy, Ghada
    Bakkers, Erik P. A. M.
    Kouwenhoven, Leo P.
    de Lange, Gijs
    [J]. PHYSICAL REVIEW B, 2022, 106 (06)
  • [9] Controllable spin polarization in an organic molecule
    Fallah, Farhang
    Esmaeilzadeh, Mahdi
    [J]. PHYSICS LETTERS A, 2013, 377 (3-4) : 338 - 341
  • [10] Phase-controllable synthesis of nanosized nickel phosphides and comparison of photocatalytic degradation ability
    Ni, Yonghong
    Jin, Lina
    Hong, Jianming
    [J]. NANOSCALE, 2011, 3 (01) : 196 - 200