The classification of Lorentzian Lie groups with non-Killing left-invariant conformal vector fields

被引:3
|
作者
Zhang, Hui [1 ,2 ]
Chen, Zhiqi [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[2] Nankai Univ, LPMC, Tianjin, Peoples R China
[3] Guangdong Univ Technol, Sch Math & Stat, Guangzhou, Peoples R China
关键词
MANIFOLDS;
D O I
10.1112/blms.12631
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is to classify Lorentzian Lie groups (G,⟨center dot,center dot⟩)$(G,\langle \cdot ,\cdot \rangle )$ admitting non-Killing left-invariant conformal vector fields whose Lie algebra is g${\mathfrak {g}}$. As we know, g${\mathfrak {g}}$ is solvable and [g,g]$[{\mathfrak {g}},{\mathfrak {g}}]$ is of codimension 1 in g${\mathfrak {g}}$. In this paper, we will prove that [g,g]$[{\mathfrak {g}},{\mathfrak {g}}]$ is an Abelian Lie algebra, or a direct sum of a generalized Heisenberg Lie algebra and an Abelian Lie algebra. We obtain a simple criterion for such Lorentzian Lie groups with dimG > 4$\dim G\geqslant 4$ to be conformally flat, and moreover, examples of conformally flat and non-conformally flat Lorentzian Lie groups are constructed. Finally, we prove that Lorentzian Lie groups admitting non-Killing left-invariant conformal vector fields can be shrinking, steady and expanding Ricci solitons.
引用
收藏
页码:1326 / 1339
页数:14
相关论文
共 50 条
  • [1] LEFT-INVARIANT CONFORMAL VECTOR FIELDS ON NON-SOLVABLE LIE GROUPS
    Zhang, Hui
    Chen, Zhiqi
    Tan, Ju
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (02) : 843 - 849
  • [2] Harmonicity of left-Invariant Vector Fields on Einstein Lorentzian Lie Groups
    Aryanejad, Yadollah
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (01): : 65 - 78
  • [3] Pseudo-Riemannian Lie groups admitting left-invariant conformal vector fields
    Zhang, Hui
    Chen, Zhiqi
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (02) : 143 - 149
  • [4] A CLASSIFICATION OF LEFT-INVARIANT LORENTZIAN METRICS ON SOME NILPOTENT LIE GROUPS
    Kondo, Yuji
    Tamaru, Hiroshi
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2023, 75 (01) : 89 - 117
  • [5] Left-Invariant Lorentzian Flat Metrics on Lie Groups
    Ben Haddou, Malika Ait
    Boucetta, Mohamed
    Lebzioui, Hicham
    [J]. JOURNAL OF LIE THEORY, 2012, 22 (01) : 269 - 289
  • [6] CONTACT RIEMANNIAN MANIFOLD WITH NON-KILLING CONFORMAL VECTOR FIELDS
    Dubey, Sudhir Kumar
    Chaudhary, O. P.
    [J]. JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2023, 22 (3-4):
  • [7] Conformal Vector Fields on Lorentzian Lie Groups of Dimension 4
    Tan, Ju
    Chen, Zhiqi
    Xu, Na
    [J]. JOURNAL OF LIE THEORY, 2018, 28 (03) : 757 - 765
  • [8] Conformal Vector Fields on Lorentzian Lie Groups of Dimension 5
    Zhang, Hui
    Chen, Zhiqi
    Zhang, Shaoxiang
    [J]. JOURNAL OF LIE THEORY, 2020, 30 (03) : 691 - 703
  • [9] LEFT-INVARIANT VECTOR FIELDS ON A LIE 2-GROUP
    Lerman, Eugene
    [J]. THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 604 - 634
  • [10] Left-Invariant Riemann Solitons of Three-Dimensional Lorentzian Lie Groups
    Wang, Yong
    [J]. SYMMETRY-BASEL, 2021, 13 (02): : 1 - 10