On the proximal point algorithm

被引:32
|
作者
Rouhani, B. Djafari [1 ]
Khatibzadeh, H. [2 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] Tarbiat Modares Univ, Dept Math, Tehran, Iran
关键词
proximal-point algorithms; variational inequalities; ergodic theorems; maximal monotone operators; asymptotic centers;
D O I
10.1007/s10957-007-9329-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let A be a maximal monotone operator in a real Hilbert space H and let {u(n)} be the sequence in H given by the proximal point algorithm, defined by u (n) =(I+c(n) A)(-1)(u(n-1)-f(n) ), for all n >= 1, with u(0) = z, where c(n) > 0 and f(n) is an element of H. We show, among other things, that under suitable conditions, u(n) converges weakly or strongly to a zero of A if and only if lim inf(n ->+infinity) vertical bar w(n)vertical bar +infinity, where w(n) = (Sigma(n)(k=1) c(k))(-1) Sigma(n)(k=1) c(k)u(k). Our results extend previous results by several authors who obtained similar results by assuming A(-1)(0) not equal phi.
引用
收藏
页码:411 / 417
页数:7
相关论文
共 50 条
  • [1] On the Proximal Point Algorithm
    B. Djafari Rouhani
    H. Khatibzadeh
    Journal of Optimization Theory and Applications, 2008, 137 : 411 - 417
  • [2] A GENERALIZATION OF THE PROXIMAL POINT ALGORITHM
    HA, CD
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (03) : 503 - 512
  • [3] The Proximal Point Algorithm Revisited
    Yunda Dong
    Journal of Optimization Theory and Applications, 2014, 161 : 478 - 489
  • [4] An abstract proximal point algorithm
    Leustean, Laurentiu
    Nicolae, Adriana
    Sipos, Andrei
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 553 - 577
  • [5] An abstract proximal point algorithm
    Laurenţiu Leuştean
    Adriana Nicolae
    Andrei Sipoş
    Journal of Global Optimization, 2018, 72 : 553 - 577
  • [6] The Proximal Point Algorithm Revisited
    Dong, Yunda
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 161 (02) : 478 - 489
  • [7] A proximal point algorithm for minimax problems
    Achiya Dax
    BIT Numerical Mathematics, 1997, 37 : 600 - 622
  • [8] The proximal point algorithm in metric spaces
    Bacak, Miroslav
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 194 (02) : 689 - 701
  • [9] Some Remarks on the Proximal Point Algorithm
    Hadi Khatibzadeh
    Journal of Optimization Theory and Applications, 2012, 153 : 769 - 778
  • [10] Comments on “The Proximal Point Algorithm Revisited”
    Yunda Dong
    Journal of Optimization Theory and Applications, 2015, 166 : 343 - 349