Spectral feature-based hyperspectral RS image retrieval

被引:0
|
作者
Du, PJ
Chen, YH [1 ]
Fang, T
Tang, H
机构
[1] China Univ Min & Technol, Dept Spatial Informat, Xuzhou 221008, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R China
[3] Beijing Normal Univ, Inst Resource Sci, Beijing 100875, Peoples R China
关键词
content-based image retrieval (CBIR); hyperspectral remote sensing image; spectral feature; similarity measure;
D O I
暂无
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Oriented to the demands of vast RS information management for RS image retrieval, the applications of spectral features are discussed by taking hyperspectral RS image as an example. It is proposed that spectral features-based retrieval includes two modes: retrieval based on point mask and polygon mask. The most key issues in retrieval are spectral features extraction and similarity measure. The spectral vector can be used to retrieval directly, and the spectral angle and spectral information divergence ( SID) are effective in similarity measure. The local maximum and minimum in reflectance spectral curve, corresponding to reflectance apex and absorption apex, can be used to retrieval also, but effective matching strategy should be adopted. The quantitative indexes for spectral curves such as moment, fractal and entropy are not suitable to retrieval because of poor similarity measure performance.
引用
收藏
页码:1171 / 1175
页数:5
相关论文
共 12 条
  • [1] [Anonymous], P ISSSR99
  • [2] DATCU M, 1999, IEEE GEOSCI REMOTE S, V2, P1335
  • [3] Huang Xiang-lin, 2002, Acta Electronica Sinica, V30, P1065
  • [4] [罗睿 Luo Rui], 2002, [遥感学报, Journal of Remote Sensing], V6, P24
  • [5] MARCHISIO GB, 1998, IEEE GEOSCI REMOTE S, V2, P669, DOI DOI 10.1109/IGARSS.1998.699546
  • [6] MARCHISIO GB, 1999, IEEE INT C GEOSC REM, V1, P290
  • [7] PU RL, 2001, HYPERSPECTRAL REMOTE
  • [8] SMEULDERS AWM, 2000, IEEE T PATTERN ANAL, P22
  • [9] Vellaikal A, 1995, P SOC PHOTO-OPT INS, V2606, P232, DOI 10.1117/12.227246
  • [10] VELLAIKAL A, 1995, P SOC PHOTO-OPT INS, V2488, P178, DOI 10.1117/12.211973