Magnetosheath control of solar wind-magnetosphere coupling efficiency

被引:19
|
作者
Pulkkinen, T. I. [1 ]
Dimmock, A. P. [1 ]
Lakka, A. [1 ]
Osmane, A. [1 ]
Kilpua, E. [2 ]
Myllys, M. [2 ]
Tanskanen, E. I. [1 ,3 ]
Viljanen, A. [3 ]
机构
[1] Aalto Univ, Dept Radio Sci & Engn, Sch Elect Engn, Aalto, Finland
[2] Univ Helsinki, Dept Phys, Helsinki, Finland
[3] Finnish Meteorol Inst, Helsinki, Finland
基金
芬兰科学院;
关键词
solar wind - magnetosphere coupling; magnetosheath; Poynting flux; TRANSPOLAR POTENTIAL SATURATION; ELEMENTARY CURRENT SYSTEMS; MEDIUM REFERENCE FRAME; POLAR-CAP; MAGNETIC-FIELD; GEOMAGNETIC STORMS; PLASMA TRANSPORT; MAGNETOMETER; MAGNETOPAUSE; DISTURBANCE;
D O I
10.1002/2016JA023011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine the role of the magnetosheath in solar wind-magnetosphere-ionosphere coupling using the Time History of Events and Macroscale Interactions during Substorms plasma and magnetic field observations in the magnetosheath together with OMNI solar wind data and auroral electrojet recordings from the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer chain. We demonstrate that the electric field and Poynting flux reaching the magnetopause are not linear functions of the electric field and Poynting flux observed in the solar wind: the electric field and Poynting flux at the magnetopause during higher driving conditions are lower than those predicted from a linear function. We also show that the Poynting flux normal to the magnetopause is linearly correlated with the directly driven part of the auroral electrojets in the ionosphere. This indicates that the energy entering the magnetosphere in the form of the Poynting flux is directly responsible for driving the electrojets. Furthermore, we argue that the polar cap potential saturation discussed in the literature is associated with the way solar wind plasma gets processed during the bow shock crossing and motion within the magnetosheath.
引用
收藏
页码:8728 / 8739
页数:12
相关论文
共 50 条
  • [1] Solar wind-magnetosphere coupling efficiency for solar wind pressure impulses
    Palmroth, M.
    Partamies, N.
    Polvi, J.
    Pulkkinen, T. I.
    McComas, D. J.
    Barnes, R. J.
    Stauning, P.
    Smith, C. W.
    Singer, H. J.
    Vainio, R.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (11)
  • [2] Decoding solar wind-magnetosphere coupling
    Beharrell, M. J.
    Honary, F.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2016, 14 (10): : 724 - 741
  • [3] A semiempirical magnetosheath model to analyze the solar wind-magnetosphere interaction
    Kallio, EJ
    Koskinen, HEJ
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A12) : 27469 - 27479
  • [4] The role of the bow shock in solar wind-magnetosphere coupling
    Lopez, R. E.
    Merkin, V. G.
    Lyon, J. G.
    [J]. ANNALES GEOPHYSICAE, 2011, 29 (06) : 1129 - 1135
  • [5] Selfsimilarity and fractional kinetics of solar wind-magnetosphere coupling
    Zaslavsky, G. M.
    Guzdar, P. N.
    Edelman, M.
    Sitnov, M. I.
    Sharma, A. S.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 373 (11-20) : 11 - 20
  • [6] THE SOLAR WIND-MAGNETOSPHERE ENERGY COUPLING AND MAGNETOSPHERIC DISTURBANCES
    AKASOFU, SI
    [J]. PLANETARY AND SPACE SCIENCE, 1980, 28 (05) : 495 - 509
  • [7] Analysis of the bimodal nature of solar wind-magnetosphere coupling
    Smith, JP
    Horton, W
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A7): : 14917 - 14923
  • [8] SOLAR-WIND DISTURBANCES AND THE SOLAR WIND-MAGNETOSPHERE ENERGY COUPLING FUNCTION
    AKASOFU, SI
    [J]. SPACE SCIENCE REVIEWS, 1983, 34 (02) : 173 - 183
  • [9] An SOC Approach to Study the Solar Wind-Magnetosphere Energy Coupling
    Banerjee, Adrija
    Bej, Amaresh
    Chatterjee, T. N.
    Majumdar, Abhijit
    [J]. EARTH AND SPACE SCIENCE, 2019, 6 (04): : 565 - 576
  • [10] DYNAMO PROCESS GOVERNING SOLAR WIND-MAGNETOSPHERE ENERGY COUPLING
    KAN, JR
    AKASOFU, SI
    [J]. PLANETARY AND SPACE SCIENCE, 1982, 30 (04) : 367 - 370