Comparative Study of Univariate and Multivariate Long Short-Term Memory for Very Short-Term Forecasting of Global Horizontal Irradiance

被引:7
|
作者
Mandal, Ashis Kumar [1 ]
Sen, Rikta [1 ]
Goswami, Saptarsi [2 ]
Chakraborty, Basabi [3 ]
机构
[1] Iwate Prefectural Univ, Grad Sch Software & Informat Sci, Takizawa 0200693, Japan
[2] Univ Calcutta, Bangabasi Morning Coll, Kolkata 700073, India
[3] Iwate Prefectural Univ, Fac Software & Informat Sci, Takizawa 0200693, Japan
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 08期
关键词
deep learning; global horizontal irradiance (GHI); long short-term memory (LSTM); multivariate; time series; univariate; ARTIFICIAL NEURAL-NETWORK; SOLAR-RADIATION; PREDICTION; MODELS; POWER;
D O I
10.3390/sym13081544
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate global horizontal irradiance (GHI) forecasting is crucial for efficient management and forecasting of the output power of photovoltaic power plants. However, developing a reliable GHI forecasting model is challenging because GHI varies over time, and its variation is affected by changes in weather patterns. Recently, the long short-term memory (LSTM) deep learning network has become a powerful tool for modeling complex time series problems. This work aims to develop and compare univariate and several multivariate LSTM models that can predict GHI in Guntur, India on a very short-term basis. To build the multivariate time series models, we considered all possible combinations of temperature, humidity, and wind direction variables along with GHI as inputs and developed seven multivariate models, while in the univariate model, we considered only GHI variability. We collected the meteorological data for Guntur from 1 January 2016 to 31 December 2016 and built 12 datasets, each containing variability of GHI, temperature, humidity, and wind direction of a month. We then constructed the models, each of which measures up to 2 h ahead of forecasting of GHI. Finally, to measure the symmetry among the models, we evaluated the performances of the prediction models using root mean square error (RMSE) and mean absolute error (MAE). The results indicate that, compared to the univariate method, each multivariate LSTM performs better in the very short-term GHI prediction task. Moreover, among the multivariate LSTM models, the model that incorporates the temperature variable with GHI as input has outweighed others, achieving average RMSE values 0.74 W/m(2)-1.5 W/m(2).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Designing a long short-term network for short-term forecasting of global horizontal irradiance
    Malakar, Sourav
    Goswami, Saptarsi
    Ganguli, Bhaswati
    Chakrabarti, Amlan
    Sen Roy, Sugata
    Boopathi, K.
    Rangaraj, A. G.
    [J]. SN APPLIED SCIENCES, 2021, 3 (04)
  • [2] Designing a long short-term network for short-term forecasting of global horizontal irradiance
    Sourav Malakar
    Saptarsi Goswami
    Bhaswati Ganguli
    Amlan Chakrabarti
    Sugata Sen Roy
    K. Boopathi
    A. G. Rangaraj
    [J]. SN Applied Sciences, 2021, 3
  • [3] Investigating Hourly Global Horizontal Irradiance Forecasting Using Long Short-Term Memory
    Yamani, Asma Z.
    Alyami, Sarah N.
    [J]. 2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [4] Short-term Load Forecasting with Distributed Long Short-Term Memory
    Dong, Yi
    Chen, Yang
    Zhao, Xingyu
    Huang, Xiaowei
    [J]. 2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [5] Univariate and multivariate methods for very short-term solar photovoltaic power forecasting
    Rana, Mashud
    Koprinska, Irena
    Agelidis, Vassilios G.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2016, 121 : 380 - 390
  • [6] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    [J]. 2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [7] A short-term water demand forecasting model using multivariate long short-term memory with meteorological data
    Zanfei, Ariele
    Brentan, Bruno Melo
    Menapace, Andrea
    Righetti, Maurizio
    [J]. JOURNAL OF HYDROINFORMATICS, 2022, 24 (05) : 1053 - 1065
  • [8] COMPARATIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK AND LONG SHORT-TERM MEMORY NETWORK FOR SOLAR IRRADIANCE FORECASTING
    Behera, Sasmita
    Bhoi, Sapnil S.
    Mishra, Asutosh
    Nayak, Silon S.
    Panda, Subrat K.
    Patnaik, Soumik S.
    [J]. JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2022, 17 (03): : 1845 - 1856
  • [9] Short-term forecasting of solar irradiance
    Paulescu, Marius
    Paulescu, Eugenia
    [J]. RENEWABLE ENERGY, 2019, 143 : 985 - 994
  • [10] Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting
    Santra, Arpita Samanta
    Lin, Jun-Lin
    [J]. ENERGIES, 2019, 12 (11)