Boundedness of a class of rough maximal functions

被引:16
|
作者
Ali, Mohammed [1 ]
Al-mohammed, Omar [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid, Jordan
关键词
Maximal functions; Lp boundedness; Rough kernels; Surfaces of revolution; Extrapolation; SINGULAR-INTEGRALS; MARCINKIEWICZ INTEGRALS; CONVOLUTION-OPERATORS; KERNELS;
D O I
10.1186/s13660-018-1900-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we obtain appropriate sharp bounds for a certain class of maximal operators along surfaces of revolution with kernels in Lq( Sn- 1), q > 1. By using these bounds and using an extrapolation argument, we establish the Lp boundedness of the maximal operators when their kernels are in L( log L) a( Sn- 1) or in the block space B0, a- 1 q ( Sn- 1). Our main results represent significant improvements as well as natural extensions of what was known previously.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Boundedness of a class of rough maximal functions
    Mohammed Ali
    Omar Al-mohammed
    [J]. Journal of Inequalities and Applications, 2018
  • [2] On the boundedness of a class of rough maximal operators on product spaces
    Al-Qassem, Hussain M.
    Cheng, Leslie C.
    Pan, Yibiao
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2011, 40 (01) : 1 - 32
  • [3] On the boundedness of a certain class of maximal functions on product spaces and extrapolation
    Al-Dolat, Mohammed
    Ali, Mohammed
    Jaradat, Imad
    Al-Zoubi, Khaldoun
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 453 - 464
  • [4] On the boundedness of a certain class of maximal functions on product spaces and extrapolation
    Mohammed Al-Dolat
    Mohammed Ali
    Imad Jaradat
    Khaldoun Al-Zoubi
    [J]. Analysis and Mathematical Physics, 2019, 9 : 453 - 464
  • [5] WEIGHTED BOUNDEDNESS OF A ROUGH MAXIMAL OPERATOR
    丁勇
    贺清正
    [J]. Acta Mathematica Scientia, 2000, (03) : 417 - 422
  • [6] Weighted boundedness of a rough maximal operator
    Ding, Y
    He, QZ
    [J]. ACTA MATHEMATICA SCIENTIA, 2000, 20 (03) : 417 - 422
  • [7] On boundedness of maximal functions in Sobolev spaces
    Hajlasz, P
    Onninen, J
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2004, 29 (01) : 167 - 176
  • [8] The boundedness for commutators of maximal hypersingular integrals with rough kernels
    YanPing Chen
    Yong Ding
    Ran Li
    [J]. Science China Mathematics, 2013, 56 : 707 - 728
  • [9] The boundedness for commutators of maximal hypersingular integrals with rough kernels
    CHEN YanPing
    DING Yong
    LI Ran
    [J]. Science China Mathematics, 2013, 56 (04) : 707 - 728
  • [10] Weighted Lp boundedness of maximal operators with rough kernels
    Al-Qassem, Hussain
    Ali, Mohammed
    [J]. AIMS MATHEMATICS, 2024, 9 (09): : 25966 - 25978