A Weil-etale version of the Birch and Swinnerton-Dyer formula over function fields
被引:3
|
作者:
Geisser, Thomas H.
论文数: 0引用数: 0
h-index: 0
机构:
Rikkyo Univ, Dept Math, 3-34-1 Nishiikebukuro, Toshima City, Tokyo 1718501, JapanRikkyo Univ, Dept Math, 3-34-1 Nishiikebukuro, Toshima City, Tokyo 1718501, Japan
Geisser, Thomas H.
[1
]
Suzuki, Takashi
论文数: 0引用数: 0
h-index: 0
机构:
Chuo Univ, Dept Math, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, JapanRikkyo Univ, Dept Math, 3-34-1 Nishiikebukuro, Toshima City, Tokyo 1718501, Japan
Suzuki, Takashi
[2
]
机构:
[1] Rikkyo Univ, Dept Math, 3-34-1 Nishiikebukuro, Toshima City, Tokyo 1718501, Japan
[2] Chuo Univ, Dept Math, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan
Birch and Swinnerton-Dyer conjecture;
Global function fields;
Weil-etale cohomology;
CONJECTURE;
D O I:
10.1016/j.jnt.2019.08.013
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We give a reformulation of the Birch and Swinnerton-Dyer conjecture over global function fields in terms of Weil-etale cohomology of the curve with coefficients in the Neron model, and show that it holds under the assumption of finiteness of the Tate-Shafarevich group. (C) 2019 Elsevier Inc. All rights reserved.