A note on metric nonlinear connections on the cotangent bundle

被引:0
|
作者
Popescu, Liviu [1 ]
Criveanu, Radu [1 ]
机构
[1] Univ Craiova, Fac Econ, Dept Math & Stat, Craiova 200585, Romania
关键词
Dynamical covariant derivative; metric nonlinear connection; INVERSE PROBLEM; HELMHOLTZ CONDITIONS; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we continue the investigation of nonlinear connections started in [16]. The problem of metrizability of the nonlinear connection on the cotangent bundle is studied. Using the dynamical covariant derivative induced by a regular vector field, we find the coefficients of a metric nonlinear connection. For the particular case of a Hamiltonian space we prove that the canonical nonlinear connection is a unique metric and symmetric nonlinear connection.
引用
收藏
页码:261 / 268
页数:8
相关论文
共 50 条
  • [1] A note on nonlinear connections on the cotangent bundle
    Popescu, L.
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2009, 25 (02) : 203 - 214
  • [2] On metric connections with torsion on the cotangent bundle with modified Riemannian extension
    Bilen L.
    Gezer A.
    [J]. Journal of Geometry, 2018, 109 (1)
  • [3] The Fisher metric as a metric on the cotangent bundle
    Nagaoka H.
    [J]. Information Geometry, 2024, 7 (Suppl 1) : 651 - 677
  • [4] Connections and regularity on the cotangent bundle
    Mitric, G
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1999, 55 (1-2): : 141 - 154
  • [5] ON THE COTANGENT BUNDLE AND UNIT COTANGENT BUNDLE WITH A GENERALIZED CHEEGER-GROMOLL METRIC
    Zagane, Abderrahim
    Djaa, Nour Elhouda
    Gezer, Aydin
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 153 - 178
  • [6] NONLINEAR CONNECTION IN COTANGENT BUNDLE
    ATANASIU, G
    KLEPP, FC
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1991, 39 (1-2): : 107 - 111
  • [7] DERIVATIVES OF SASAKIAN METRIC Sg ON COTANGENT BUNDLE
    Cayir, Hasim
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 751 - 761
  • [8] Notes About a New Metric on the Cotangent Bundle
    Ocak, Filiz
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2019, 12 (02): : 241 - 249
  • [9] THE NATURAL LIFTINGS OF CONNECTIONS TO TENSOR POWERS OF THE COTANGENT BUNDLE
    Kurek, Jan
    Mikulski, Wlodzimierz M.
    [J]. MISKOLC MATHEMATICAL NOTES, 2013, 14 (02) : 517 - 524
  • [10] g-NATURAL METRIC AND HARMONICITY ON THE COTANGENT BUNDLE
    Zagane, Abderrahim
    Zagane, Mohammed
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (01): : 135 - 147