Bayesian recursive parameter estimation for hydrologic models

被引:303
|
作者
Thiemann, M [1 ]
Trosset, M [1 ]
Gupta, H [1 ]
Sorooshian, S [1 ]
机构
[1] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA
关键词
D O I
10.1029/2000WR900405
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The uncertainty in a given hydrologic prediction is the compound effect of the parameter, data, and structural uncertainties associated with the underlying model. In general, therefore, the confidence in a hydrologic prediction can be improved by reducing the uncertainty associated with the parameter estimates. However, the classical approach to doing this via model calibration typically requires that, considerable amounts of data be collected and assimilated before the model can be used. This limitation becomes immediately apparent when hydrologic predictions must be generated for a previously ungauged watershed that has only recently been instrumented. This paper presents the framework for a Bayesian recursive estimation approach to hydrologic prediction that can be used for simultaneous parameter estimation and prediction in an operational setting. The prediction is described in terms of the probabilities associated with different output values. The uncertainty associated with the parameter estimates is updated (reduced) recursively, resulting in smaller prediction uncertainties as measurement data are successively assimilated. The effectiveness and efficiency of the method are illustrated in the context of two models: a simple unit hydrograph model and the more complex Sacramento soil moisture accounting model, using data from the Leaf River basin in Mississippi.
引用
收藏
页码:2521 / 2535
页数:15
相关论文
共 50 条
  • [1] RECURSIVE PARAMETER-ESTIMATION OF HYDROLOGIC-MODELS
    RAJARAM, H
    GEORGAKAKOS, KP
    [J]. WATER RESOURCES RESEARCH, 1989, 25 (02) : 281 - 294
  • [2] Reply to comment by K. Beven and P. Young on "Bayesian recursive parameter estimation for hydrologic models''
    Gupta, H
    Thiemann, M
    Trosset, M
    Sorooshian, S
    [J]. WATER RESOURCES RESEARCH, 2003, 39 (05)
  • [3] A new Bayesian recursive technique for parameter estimation
    Kaheil, Yasir H.
    Gill, M. Kashif
    McKee, Mac
    Bastidas, Luis
    [J]. WATER RESOURCES RESEARCH, 2006, 42 (08)
  • [4] Comment on "Bayesian recursive parameter estimation for hydrologic models" by M. Thiemann, M. Trosset, H. Gupta, and S. Sorooshian
    Beven, K
    Young, P
    [J]. WATER RESOURCES RESEARCH, 2003, 39 (05)
  • [5] Multiscan Recursive Bayesian Method for Parameter Estimation of Spatially-varying Sea Clutter Models
    Yu, Han
    Shui, Penglang
    Zeng, Weiliang
    Lu, Kai
    [J]. 2018 INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2018,
  • [6] A Bayesian Framework for Parameter Estimation in Dynamical Models
    Coelho, Flavio Codeco
    Codeco, Claudia Torres
    Gomes, M. Gabriela M.
    [J]. PLOS ONE, 2011, 6 (05):
  • [7] Parameter estimation for multiple post-wildfire hydrologic models
    Ebel, Brian A.
    Moody, John A.
    [J]. HYDROLOGICAL PROCESSES, 2020, 34 (21) : 4049 - 4066
  • [8] A 'User-Friendly' approach to parameter estimation in hydrologic models
    Hogue, TS
    Gupta, H
    Sorooshian, S
    [J]. JOURNAL OF HYDROLOGY, 2006, 320 (1-2) : 202 - 217
  • [9] PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS - APPLICATIONS TO HYDROLOGIC MODELS.
    Sorooshian, S.
    Arfi, F.
    Loparo, K.
    [J]. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 1980, 2
  • [10] Consistent recursive parameter estimation of partial differential equation models
    Guo, L. Z.
    Billings, S. A.
    Coca, D.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (10) : 1946 - 1954