Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology

被引:186
|
作者
Sharma, Harshita [1 ]
Zerbe, Norman [2 ]
Klempert, Iris [2 ]
Hellwich, Olaf [1 ]
Hufnagl, Peter [2 ]
机构
[1] Tech Univ Berlin, Comp Vis & Remote Sensing, Berlin, Germany
[2] Charite, Inst Pathol, Dept Digital Pathol & IT, Berlin, Germany
关键词
Deep learning; Convolutional neural networks; Gastric carcinoma; Digital pathology; Histopathological image analysis; Cancer classification; Necrosis detection; CANCER;
D O I
10.1016/j.compmedimag.2017.06.001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep learning using convolutional neural networks is an actively emerging field in histological image analysis. This study explores deep learning methods for computer-aided classification in H&E stained histopathological whole slide images of gastric carcinoma. An introductory convolutional neural network architecture is proposed for two computerized applications, namely, cancer classification based on immunohistochemical response and necrosis detection based on the existence of tumor necrosis in the tissue. Classification performance of the developed deep learning approach is quantitatively compared with traditional image analysis methods in digital histopathology requiring prior computation of handcrafted features, such as statistical measures using gray level co-occurrence matrix, Gabor-filter-bank responses, LBP histograms, gray histograms, HSV histograms and RGB histograms, followed by random forest machine learning. Additionally, the widely known AlexNet deep convolutional framework is comparatively analyzed for the corresponding classification problems. The proposed convolutional neural network architecture reports favorable results, with an overall classification accuracy of 0.6990 for cancer classification and 0.8144 for necrosis detection. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 50 条
  • [1] Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks
    Gecer, Bads
    Aksoy, Selim
    Mercan, Ezgi
    Shapiro, Linda G.
    Weaver, Donald L.
    Elmore, Joann G.
    [J]. PATTERN RECOGNITION, 2018, 84 : 345 - 356
  • [2] Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images
    Jang, Hyun-Jong
    Song, In-Hye
    Lee, Sung-Hak
    [J]. CANCERS, 2021, 13 (15)
  • [3] MULTIPLE INSTANCE LEARNING OF DEEP CONVOLUTIONAL NEURAL NETWORKS FOR BREAST HISTOPATHOLOGY WHOLE SLIDE CLASSIFICATION
    Das, Kausik
    Conjeti, Sailesh
    Roy, Abhijit Guha
    Chatterjee, Jyotirmoy
    Sheet, Debdoot
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 578 - 581
  • [4] Automatic Pancreatic Ductal Adenocarcinoma Detection in Whole Slide Images Using Deep Convolutional Neural Networks
    Fu, Hao
    Mi, Weiming
    Pan, Boju
    Guo, Yucheng
    Li, Junjie
    Xu, Rongyan
    Zheng, Jie
    Zou, Chunli
    Zhang, Tao
    Liang, Zhiyong
    Zou, Junzhong
    Zou, Hao
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [5] Automatic detection of invasive ductal carcinoma in whole slide images with Convolutional Neural Networks
    Cruz-Roa, Angel
    Basavanhally, Ajay
    Gonzalez, Fabio
    Gilmore, Hannah
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie
    Tomaszewski, John
    Madabhushi, Anant
    [J]. MEDICAL IMAGING 2014: DIGITAL PATHOLOGY, 2014, 9041
  • [6] Classification of Whole Mammogram and Tomosynthesis Images Using Deep Convolutional Neural Networks
    Zhang, Xiaofei
    Zhang, Yi
    Han, Erik Y.
    Jacobs, Nathan
    Han, Qiong
    Wang, Xiaoqin
    Liu, Jinze
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2018, 17 (03) : 237 - 242
  • [7] Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
    Takiyama, Hirotoshi
    Ozawa, Tsuyoshi
    Ishihara, Soichiro
    Fujishiro, Mitsuhiro
    Shichijo, Satoki
    Nomura, Shuhei
    Miura, Motoi
    Tada, Tomohiro
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [8] Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
    Hirotoshi Takiyama
    Tsuyoshi Ozawa
    Soichiro Ishihara
    Mitsuhiro Fujishiro
    Satoki Shichijo
    Shuhei Nomura
    Motoi Miura
    Tomohiro Tada
    [J]. Scientific Reports, 8
  • [9] Automatic anatomical classification of colonoscopic images using deep convolutional neural networks
    Saito, Hiroaki
    Tanimoto, Tetsuya
    Ozawa, Tsuyoshi
    Ishihara, Soichiro
    Fujishiro, Mitsuhiro
    Shichijo, Satoki
    Hirasawa, Dai
    Matsuda, Tomoki
    Endo, Yuma
    Tada, Tomohiro
    [J]. GASTROENTEROLOGY REPORT, 2021, 9 (03): : 226 - 233
  • [10] Multiclass Tissue Classification of Whole-Slide Histological Images using Convolutional Neural Networks
    Wetteland, Rune
    Engan, Kjersti
    Eftestol, Trygve
    Kvikstad, Vebjorn
    Janssen, Emilius A. M.
    [J]. ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 320 - 327