Brain-Inspired Computing with Spin Torque Devices

被引:0
|
作者
Roy, Kaushik [1 ]
Sharad, Mrigank [1 ]
Fan, Deliang [1 ]
Yogendra, Karthik [1 ]
机构
[1] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
spin; logic; low power; threshold logic; analog; neural networks; non-Boolean; programmable logic array; coupled spin torque nano oscillators;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we discuss the potential of emerging spintorque devices for computing applications. Recent proposals for spin-based computing schemes may be differentiated as 'all-spin' vs. hybrid, programmable vs. fixed, and, Boolean vs. non-Boolean. All-spin logic-styles may offer high area-density due to small form-factor of nano-magnetic devices. However, circuit and system-level design techniques need to be explored that leaverage the specific spin-device characterisitcs to achieve energy-efficiency, performance and reliability comparable to those of CMOS. The non-volatility of nano-magnets can be exploited in the design of energy and area-efficient programmable logic. In such logic-styles, spin-devices may play the dual-role of computing as well as memory-elements that provide field-programmability. Spin-based threshold logic design is presented as an example. Emerging spintronic phenomena may lead to ultra-low-voltage, current-mode, spin-torque switches that can offer attractive computing capabilities, beyond digital switches. Such devices may be suitable for non-Boolean data-processing applications which involve analog processing. Integration of such spin-torque devices with charge-based devices like CMOS and resistive memory can lead to highly energy-efficient information processing hardware for applicatons like pattern-matching, neuromorphic-computing, image-processing and data-conversion. Finally, we discuss the possibility of using coupled spin-torque nano oscillators for low-power non-Boolean computing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Brain-inspired computing with spintronics devices
    Tsunegi, Sumito
    Torrejon, Jacob
    Riou, Mathieu
    Araujo, Flavio Abreu
    Cros, Vincent
    Grollier, Julie
    Yakushiji, Kay
    Fukushima, Akio
    Yuasa, Shinji
    Kubota, Hitoshi
    [J]. 2018 IEEE INTERNATIONAL MEETING FOR FUTURE OF ELECTRON DEVICES, KANSAI (IMFEDK), 2018,
  • [2] Memristive Devices and Networks for Brain-Inspired Computing
    Zhang, Teng
    Yang, Ke
    Xu, Xiaoyan
    Cai, Yimao
    Yang, Yuchao
    Huang, Ru
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2019, 13 (08):
  • [3] Emerging Optoelectronic Devices for Brain-Inspired Computing
    Hu, Lingxiang
    Zhuge, Xia
    Wang, Jingrui
    Wei, Xianhua
    Zhang, Li
    Chai, Yang
    Xue, Xiaoyong
    Ye, Zhizhen
    Zhuge, Fei
    [J]. ADVANCED ELECTRONIC MATERIALS, 2024,
  • [4] Brain-Inspired Computing
    Modha, Dharmendra S.
    [J]. 2015 INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURE AND COMPILATION (PACT), 2015, : 253 - 253
  • [5] Brain-inspired computing
    Furber, Steve B.
    [J]. IET COMPUTERS AND DIGITAL TECHNIQUES, 2016, 10 (06): : 299 - 305
  • [6] Brain-inspired computing with memristors: Challenges in devices, circuits, and systems
    Zhang, Yang
    Wang, Zhongrui
    Zhu, Jiadi
    Yang, Yuchao
    Rao, Mingyi
    Song, Wenhao
    Zhuo, Ye
    Zhang, Xumeng
    Cui, Menglin
    Shen, Linlin
    Huang, Ru
    Joshua Yang, J.
    [J]. APPLIED PHYSICS REVIEWS, 2020, 7 (01):
  • [7] Emerging Memristive Devices for Brain-Inspired Computing and Artificial Perception
    Wang, Jingyu
    Zhu, Ying
    Zhu, Li
    Chen, Chunsheng
    Wan, Qing
    [J]. FRONTIERS IN NANOTECHNOLOGY, 2022, 4
  • [8] Brain-inspired Computing - Introduction
    Haas, Robert
    Pfeiffer, Michael
    [J]. ERCIM NEWS, 2021, (125): : 6 - 7
  • [9] Building brain-inspired computing
    Strukov, Dmitri
    Indiveri, Giacomo
    Grollier, Julie
    Fusi, Stefano
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [10] TOWARDS BRAIN-INSPIRED COMPUTING
    Gingl, Zoltan
    Kish, Laszlo B.
    Khatri, Sunil P.
    [J]. FLUCTUATION AND NOISE LETTERS, 2010, 9 (04): : 403 - 412