Category-Level 6D Object Pose Estimation via Cascaded Relation and Recurrent Reconstruction Networks

被引:50
|
作者
Wang, Jiaze [1 ]
Chen, Kai [1 ]
Dou, Qi [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, T Stone Robot Inst, Hong Kong, Peoples R China
关键词
RECOGNITION;
D O I
10.1109/IROS51168.2021.9636212
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Category-level 6D pose estimation, aiming to predict the location and orientation of unseen object instances, is fundamental to many scenarios such as robotic manipulation and augmented reality, yet still remains unsolved. Precisely recovering instance 3D model in the canonical space and accurately matching it with the observation is an essential point when estimating 6D pose for unseen objects. In this paper, we achieve accurate category-level 6D pose estimation via cascaded relation and recurrent reconstruction networks. Specifically, a novel cascaded relation network is dedicated for advanced representation learning to explore the complex and informative relations among instance RGB image, instance point cloud and category shape prior. Furthermore, we design a recurrent reconstruction network for iterative residual refinement to progressively improve the reconstruction and correspondence estimations from coarse to fine. Finally, the instance 6D pose is obtained leveraging the estimated dense correspondences between the instance point cloud and the reconstructed 3D model in the canonical space. We have conducted extensive experiments on two well-acknowledged benchmarks of category-level 6D pose estimation, with significant performance improvement over existing approaches. On the representatively strict evaluation metrics of 3D(75) and 5 degrees 2cm, our method exceeds the latest state-of-the-art SPD [1] by 4.9% and 17.7% on the CAMERA25 dataset, and by 2.7% and 8.5% on the REAL275 dataset. Codes are avaliable at https://wangjiaze.cn/projects/6DPoseEstimation.html.
引用
收藏
页码:4807 / 4814
页数:8
相关论文
共 50 条
  • [1] An efficient network for category-level 6D object pose estimation
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Yang, Xinxin
    Lu, Guangshan
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1643 - 1651
  • [2] CatFormer: Category-Level 6D Object Pose Estimation with Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6808 - 6816
  • [3] RANSAC Optimization for Category-level 6D Object Pose Estimation
    Chen, Ying
    Kang, Guixia
    Wang, Yiping
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 50 - 56
  • [4] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    [J]. Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [5] GSNet: Model Reconstruction Network for Category-level 6D Object Pose and Size Estimation
    Liu, Penglei
    Zhang, Qieshi
    Cheng, Jun
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2898 - 2904
  • [6] KGNet: Knowledge-Guided Networks for Category-Level 6D Object Pose and Size Estimation
    Meng, Qiwei
    Gu, Jason
    Zhu, Shiqiang
    Liao, Jianfeng
    Jin, Tianlei
    Guo, Fangtai
    Wang, Wen
    Song, Wei
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6102 - 6108
  • [7] Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
    Wang, He
    Sridhar, Srinath
    Huang, Jingwei
    Valentin, Julien
    Song, Shuran
    Guibas, Leonidas J.
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2637 - 2646
  • [8] Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention
    Liu, Jierui
    Cao, Zhiqiang
    Tang, Yingbo
    Liu, Xilong
    Tan, Min
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6728 - 6740
  • [9] Category-Level 6D Object Pose Recovery in Depth Images
    Sahin, Caner
    Kim, Tae-Kyun
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 : 665 - 681
  • [10] SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose Estimation
    Li, Guowei
    Zhu, Dongchen
    Zhang, Guanghui
    Shi, Wenjun
    Zhang, Tianyu
    Zhang, Xiaolin
    Li, Jiamao
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5674 - 5683