CHARACTERIZING COMBUSTION INSTABILITY USING DEEP CONVOLUTIONAL NEURAL NETWORK

被引:0
|
作者
Gangopadhyay, Tryambak [1 ]
Locurto, Anthony [1 ]
Boor, Paige [1 ]
Michael, James B. [1 ]
Sarkar, Soumik [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
关键词
NOISE; DECOMPOSITION; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting the transition to an impending instability is important to initiate effective control in a combustion system. As one of the early applications of characterizing thermoacoustic instability using Deep Neural Networks, we train our proposed deep convolutional neural network (CNN) model on sequential image frames extracted from hi-speed flame videos by inducing instability in the system following a particular protocol-varying the acoustic length. We leverage the sound pressure data to define a non-dimensional instability measure used for applying an inexpensive but noisy labeling technique to train our supervised 2D CNN model. We attempt to detect the onset of instability in a transient dataset where instability is induced by a different protocol. With the continuous variation of the control parameter, we can successfully detect the critical transition to a state of high combustion instability demonstrating the robustness of our proposed detection framework, which is independent of the combustion inducing protocol.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Characterizing soot in TEM images using a convolutional neural network
    Sipkens, Timothy A.
    Frei, Max
    Baldelli, Alberto
    Kirchen, Patrick
    Kruis, Frank E.
    Rogak, Steven N.
    POWDER TECHNOLOGY, 2021, 387 : 313 - 324
  • [2] Detection of precursors of combustion instability using convolutional recurrent neural networks
    Cellier, A.
    Lapeyre, C. J.
    Oztarlik, G.
    Poinsot, T.
    Schuller, T.
    Selle, L.
    COMBUSTION AND FLAME, 2021, 233
  • [3] INVERSE DESIGN OF AIRFOILS USING CONVOLUTIONAL NEURAL NETWORK AND DEEP NEURAL NETWORK
    Kumar, Amit
    Vadlamani, Nagabhushana Rao
    PROCEEDINGS OF ASME 2021 GAS TURBINE INDIA CONFERENCE (GTINDIA2021), 2021,
  • [4] Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network
    Gong, Sung-Hyun
    Baek, Won-Kyung
    Jung, Hyung-Sup
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 1723 - 1735
  • [5] IMAGE RECONSTRUCTION USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Shireesha, Muthineni
    Yadav, Gargi
    Chandra, Saroj Kumar
    Bajpai, Manish Kumar
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [6] Wetland Classification Using Deep Convolutional Neural Network
    Mandianpari, Masoud
    Rezaee, Mohammad
    Zhang, Yun
    Salehi, Bahram
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9249 - 9252
  • [7] Skin Identification Using Deep Convolutional Neural Network
    Oghaz, Mahdi Maktab Dar
    Argyriou, Vasileios
    Monekosso, Dorothy
    Remagnino, Paolo
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 181 - 193
  • [8] Detection of Potholes Using a Deep Convolutional Neural Network
    Suong, Lim Kuoy
    Jangwoo, Kwon
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (09) : 1244 - 1257
  • [9] Deep Convolutional Neural Network Ensembles Using ECOC
    Ahmed, Sara Atito Ali
    Zor, Cemre
    Awais, Muhammad
    Yanikoglu, Berrin
    Kittler, Josef
    IEEE ACCESS, 2021, 9 : 86083 - 86095
  • [10] Deep Foreground Segmentation using Convolutional Neural Network
    Shahbaz, Ajmal
    Jo, Kang-Hyun
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 1397 - 1400