Stereo Visual Inertial Odometry for Robots with Limited Computational Resources

被引:4
|
作者
Bahnam, Stavrow [1 ]
Pfeiffer, Sven [1 ]
de Croon, Guido C. H. E. [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Control & Operat Dept, MAVLab, NL-2628 CD Delft, Netherlands
关键词
Aerial Systems: Perception and Autonomy; Vision-Based Navigation; Computational Efficiency; KALMAN FILTER;
D O I
10.1109/IROS51168.2021.9636807
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current existing stereo visual odometry algorithms are computationally too expensive for robots with restricted resources. Executing these algorithms on such robots leads to a low frame rate and unacceptable decay in accuracy. We modify S-MSCKF, one of the most computationally efficient stereo Visual Inertial Odometry (VIO) algorithm, to improve its speed and accuracy when tracking low numbers of features. Specifically, we implement the Inverse Lucas-Kanade (ILK) algorithm for feature tracking and stereo matching. An outlier detector based on the average sum square difference of the template and matching warp in the ILK ensures higher robustness, e.g., in the presence of brightness changes. We restrict stereo matching to slide the window only in the x-direction to further decrease the computational costs. Moreover, we limit detection of new features to the regions of interest that have too few features. The modified S-MSCKF uses half of the processing time while obtaining competitive accuracy. This allows the algorithm to run in real-time on the extremely limited Raspberry Pi Zero single-board computer.
引用
收藏
页码:9154 / 9159
页数:6
相关论文
共 50 条
  • [1] Stereo visual-inertial odometry using structural lines for localizing indoor wheeled robots
    Tang, Yanfeng
    Wei, Chenchen
    Cheng, Shoulong
    Huang, Zhi
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (05)
  • [2] Stereo Visual Inertial Odometry Using Incremental Smoothing
    Li, Yueliang
    Zhong, Xunyu
    Tian, Jun
    Zou, Chaosheng
    Peng, Xiafu
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 5334 - 5339
  • [3] A Fast Stereo Visual-Inertial Odometry for MAVs
    Bi, Yingcai
    Lai, Shupeng
    Chen, Ben M.
    [J]. 2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 265 - 270
  • [4] Direct Visual-Inertial Odometry with Stereo Cameras
    Usenko, Vladyslav
    Engel, Jakob
    Stueckler, Joerg
    Cremers, Daniel
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1885 - 1892
  • [5] Stereo Visual Inertial Odometry with Online Baseline Calibration
    Fan, Yunfei
    Wang, Ruofu
    Mao, Yinian
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 1084 - 1090
  • [6] Stereo Visual Odometry for Mobile Robots on Uneven Terrain
    Ericson, Stefan
    Astrand, Bjorn
    [J]. WCECS 2008: ADVANCES IN ELECTRICAL AND ELECTRONICS ENGINEERING - IAENG SPECIAL EDITION OF THE WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, PROCEEDINGS, 2009, : 150 - +
  • [7] Direct Sparse Stereo Visual-Inertial Global Odometry
    Wang, Ziqiang
    Li, Mei
    Zhou, Dingkun
    Zheng, Ziqiang
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 14403 - 14409
  • [8] ESVIO: Event-Based Stereo Visual Inertial Odometry
    Chen, Peiyu
    Guan, Weipeng
    Lu, Peng
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (06) : 3661 - 3668
  • [9] A Stereo-Based Visual-Inertial Odometry for SLAM
    Li, Yong
    Lang, ShiBing
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 594 - 598
  • [10] Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight
    Sun, Ke
    Mohta, Kartik
    Pfrommer, Bernd
    Watterson, Michael
    Liu, Sikang
    Mulgaonkar, Yash
    Taylor, Camillo J.
    Kumar, Vijay
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (02): : 965 - 972