SVM-Based Parameter Identification for Composite ZIP and Electronic Load Modeling

被引:39
|
作者
Wang, Chong [1 ]
Wang, Zhaoyu [1 ]
Wang, Jianhui [2 ]
Zhao, Dongbo [3 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[2] Southern Methodist Univ, Dept Elect Engn, Dallas, TX 75205 USA
[3] Argonne Natl Lab, Lemont, IL 60439 USA
关键词
Electronic load; noise reduction; parameter identification; support vector machine; ZIP load; POWER-SYSTEM;
D O I
10.1109/TPWRS.2018.2865966
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a parameter identification technique for composite ZIP and electronic loads by leveraging the support vector machine (SVM) approach. Since the active power and the reactive power of electronic loads are piecewise functions of the voltage magnitude, the operating modes of electronic loads are determined by the voltage magnitude. To improve the accuracy of parameter identification, two filters (Hampel and Savitzky-Golay) are employed to preprocess measurements to reduce noise. The data after noise reduction serve as training data for the regression model that is solved by the SVM approach. Numerical results show that the SVM approach with filters can identify the parameters of the composite ZIP and electronic load model with high accuracy.
引用
收藏
页码:182 / 193
页数:12
相关论文
共 50 条
  • [1] SVM-Based Parameter Identification for Static Load Modeling
    Wang, Chong
    Wang, Zhaoyu
    Ma, Shanshan
    [J]. 2018 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2018,
  • [2] Parameter Timing in SVM-Based Power Macro-Modeling
    Gusmao, Antonio
    Silveira, L. Miguel
    Monteiro, Jose
    [J]. ISQED 2009: PROCEEDINGS 10TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, VOLS 1 AND 2, 2009, : 135 - 140
  • [3] Fast Parameter Identification and Modeling of Electric Load Based on Simplified Composite Load Model
    Yu, Songtai
    Zhang, Shuqing
    Han, Yingduo
    Lu, Chao
    Yu, Zhihong
    Zhang, Xinran
    [J]. 2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [4] Research on SVM-Based Bearing Fault Diagnosis Modeling and Multiple Swarm Genetic Algorithm Parameter Identification Method
    Mo, Changchun
    Han, Huizi
    Liu, Mei
    Zhang, Qinghua
    Yang, Tao
    Zhang, Fei
    [J]. MATHEMATICS, 2023, 11 (13)
  • [5] SVM-based identification of pathological voices
    Chen, Wenxi
    Peng, Ce
    Zhu, Xin
    Wan, Baikun
    Wei, Daming
    [J]. 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 3786 - 3789
  • [6] SVM-Based Spectral Matching for Metabolite Identification
    Zhou, Bin
    Cheema, Amrita K.
    Ressom, Habtom W.
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 756 - 759
  • [7] Imitation and Transfer Q-Learning-Based Parameter Identification for Composite Load Modeling
    Xie, Jian
    Ma, Zixiao
    Dehghanpour, Kaveh
    Wang, Zhaoyu
    Wang, Yishen
    Diao, Ruisheng
    Shi, Di
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (02) : 1674 - 1684
  • [8] Robust Time-Varying Parameter Identification for Composite Load Modeling
    Wang, Chong
    Wang, Zhaoyu
    Wang, Jianhui
    Zhao, Dongbo
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 967 - 979
  • [9] SVM-based fuzzy modeling for the arc welding process
    Huang, Xixia
    Chen, Shanben
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 427 (1-2): : 181 - 187
  • [10] Modeling and Parameter Identification of the MR Damper Based on LS-SVM
    Qian, Cheng
    Yin, Xiaoliang
    Ouyang, Qing
    [J]. INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2021, 2021