STRONGLY CONVERGENT ITERATIVE METHODS FOR SPLIT EQUALITY VARIATIONAL INCLUSION PROBLEMS IN BANACH SPACES

被引:22
|
作者
Chang, Shih-sen [1 ]
Wang, Lin [2 ]
Qin, Lijuan [3 ]
Ma, Zhaoli [4 ]
机构
[1] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[2] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Peoples R China
[3] Kunming Univ, Dept Math, Kunming 650214, Peoples R China
[4] Yunnan Normal Univ, Coll Arts & Sci, Sch Informat Engn, Kunming 650222, Peoples R China
基金
中国国家自然科学基金;
关键词
the split equality variational inclusion problem in Banach space; split feasibility problem in Banach space; split equilibrium problem in Banach spaces; FEASIBILITY PROBLEMS; OPEN QUESTION; CQ-ALGORITHM; THEOREMS; SETS;
D O I
10.1016/S0252-9602(16)30096-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility problems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.
引用
收藏
页码:1641 / 1650
页数:10
相关论文
共 50 条
  • [1] STRONGLY CONVERGENT ITERATIVE METHODS FOR SPLIT EQUALITY VARIATIONAL INCLUSION PROBLEMS IN BANACH SPACES
    张石生
    王林
    秦丽娟
    马招丽
    [J]. Acta Mathematica Scientia(English Series)., 2016, 36 (06) - 1650
  • [2] Application of new strongly convergent iterative methods to split equality problems
    Gautam, Pankaj
    Dixit, Avinash
    Sahu, D. R.
    Som, T.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [3] Application of new strongly convergent iterative methods to split equality problems
    Pankaj Gautam
    Avinash Dixit
    D. R. Sahu
    T. Som
    [J]. Computational and Applied Mathematics, 2020, 39
  • [4] On split equality equilibrium, monotone variational inclusion and fixed point problems in Banach spaces
    Godwin, Emeka Chigaemezu
    Abass, Hammed Anuoluwapo
    Izuchukwu, Chinedu
    Mewomo, Oluwatosin Temitope
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
  • [5] Strongly Convergent Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces
    Akashi, Shigeo
    Kimura, Yasunori
    Takahashi, Wataru
    [J]. JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 917 - 938
  • [6] Iterative solution of split variational inclusion problem in a real Banach spaces
    Ogbuisi F.U.
    Mewomo O.T.
    [J]. Afrika Matematika, 2017, 28 (1-2) : 295 - 309
  • [7] On solving general split equality variational inclusion problems in Banach space
    Zhao, J.
    Liang, Y. S.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3619 - 3629
  • [8] Split equality variational inequality problems for pseudomonotone mappings in Banach spaces
    Boikanyo, Oganeditse A.
    Zegeye, Habtu
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (01): : 139 - 158
  • [9] A Strongly Convergent Algorithm for Solving Multiple set Split Equality Equilibrium and Fixed Point Problems in Banach Spaces
    Godwin, E. C.
    Mewomo, O. T.
    Alakoya, T. O.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (02) : 475 - 515
  • [10] STRONGLY CONVERGENT ITERATIVE METHOD FOR THE SPLIT COMMON NULL POINT PROBLEM IN BANACH SPACES
    Alofi, A. S.
    Alsulami, Saud M.
    Takahashi, Wataru
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (02) : 311 - 324