Wavelet-based image denoising using hidden Markov models

被引:0
|
作者
Fan, GL [1 ]
Xia, XG [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
关键词
D O I
10.1109/ICIP.2000.899344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wavelet-domain hidden Markov models (HMMs) have been recently proposed and applied to image processing, e.g., image de noising. In this paper, we develop a new HMM, called local contextual HMM (LCHMM), by introducing the Gaussian mixture held where wavelet coefficients are assumed to locally follow the Gaussian mixture distributions determined by their neighborhoods. The LCHMM can exploit both the local statistics and the intrascale dependencies of wavelet coefficients at low computational complexity. We show that the proposed LCHMM combined with the "Cycle-spinning" technique may achieve the best performance in image denoising.
引用
收藏
页码:258 / 261
页数:4
相关论文
共 50 条
  • [1] Wavelet-based denoising using hidden Markov models
    Borran, MJ
    Nowak, RD
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 3925 - 3928
  • [2] Wavelet-based image denoising using contextual hidden Markov tree model
    Tseng, DC
    Shih, MY
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2005, 14 (03) : 1 - 12
  • [3] Wavelet-based partial discharge denoising using hidden markov model
    Wen, Z
    Zhang, YG
    Yu, WY
    Huang, CJ
    [J]. POWERCON 2002: INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY, VOLS 1-4, PROCEEDINGS, 2002, : 2239 - 2242
  • [4] Hidden Markov models for wavelet image separation and denoising
    Ichir, MM
    Mohammad-Djafari, A
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 225 - 228
  • [5] Image interpolation using wavelet-based Hidden Markov trees
    Kinebuchi, K
    Muresan, DD
    Parks, HW
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 1957 - 1960
  • [6] Wavelet-based unsupervised SAR image segmentation using hidden Markov tree models*
    Ye, Z
    Lu, CC
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 729 - 732
  • [7] Digital radiographic image denoising via wavelet-based hidden Markov model estimation
    Ferrari, RJ
    Winsor, R
    [J]. JOURNAL OF DIGITAL IMAGING, 2005, 18 (02) : 154 - 167
  • [8] Digital Radiographic Image Denoising Via Wavelet-Based Hidden Markov Model Estimation
    Ricardo J. Ferrari
    Robin Winsor
    [J]. Journal of Digital Imaging, 2005, 18 : 154 - 167
  • [9] Denoising of GPS Positioning Data Using Wavelet-Based Hidden Markov Tree
    Mahesh, Ch.
    Ravindra, K.
    Prasad, V. Kamakshi
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 1, 2016, 379 : 617 - 627
  • [10] Image denoising using hidden Markov models
    Ghabeli, L
    Amindavar, H
    [J]. EURASIA-ICT 2002: INFORMATION AND COMMUNICATION TECHNOLOGY, PROCEEDINGS, 2002, 2510 : 402 - 409