Computation in the nervous system often relies on the integration of signals from parallel circuits with different functional properties. Correlated noise in these inputs can, in principle, have diverse and dramatic effects on the reliability of the resulting computations(1-8). Such theoretical predictions have rarely been tested experimentally because of a scarcity of preparations that permit measurement of both the covariation of a neuron's input signals and the effect on a cell's output of manipulating such covariation. Here we introduce a method to measure covariation of the excitatory and inhibitory inputs a cell receives. This method revealed strong correlated noise in the inputs to two types of retinal ganglion cell. Eliminating correlated noise without changing other input properties substantially decreased the accuracy with which a cell's spike outputs encoded light inputs. Thus, covariation of excitatory and inhibitory inputs can be a critical determinant of the reliability of neural coding and computation.
机构:
Portland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, Portland, OR 97239 USAPortland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, Portland, OR 97239 USA
Billings, Curtis J.
Bennett, Keri O.
论文数: 0引用数: 0
h-index: 0
机构:
Portland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, Portland, OR 97239 USAPortland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, Portland, OR 97239 USA
Bennett, Keri O.
Molis, Michelle R.
论文数: 0引用数: 0
h-index: 0
机构:
Portland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, Portland, OR 97239 USAPortland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, Portland, OR 97239 USA
Molis, Michelle R.
Leek, Marjorie R.
论文数: 0引用数: 0
h-index: 0
机构:
Portland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, Portland, OR 97239 USAPortland VA Med Ctr, Natl Ctr Rehabilitat Auditory Res, Portland, OR 97239 USA