Optimality criteria for regression models based on predicted variance

被引:27
|
作者
Dette, H [1 ]
O'Brien, TE
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] Ciba Geigy AG, CH-4002 Basel, Switzerland
关键词
Bayesian design; invariance; optimal design;
D O I
10.1093/biomet/86.1.93
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the context of nonlinear regression models, a new class of optimum design criteria is developed and illustrated. This new class, termed I-L-optimality, is analogous to Kiefer's Phi(k)-criterion but is based on predicted variance, whereas Kiefer's class is based on the eigenvalues of the information matrix; I-L-optimal designs are invariant with respect to different parameterisations of the model and contain G- and D-optimality as special cases. We provide a general equivalence theorem which is used to obtain and verify I-L-optimal designs. The method is illustrated by various examples.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 50 条
  • [1] A NOTE ON VARIANCE OF A PREDICTED RESPONSE IN REGRESSION
    WALLS, RC
    WEEKS, DL
    [J]. AMERICAN STATISTICIAN, 1969, 23 (03): : 24 - &
  • [2] OPTIMALITY CRITERIA FOR MULTIRESPONSE LINEAR MODELS BASED ON PREDICTIVE ELLIPSOIDS
    Liu, Xin
    Yue, Rong-Xian
    Hickernell, Fred J.
    [J]. STATISTICA SINICA, 2011, 21 (01) : 421 - 432
  • [3] Optimality Criteria for Models with Random Effects
    Hooks, Tisha
    Marx, David
    Kachman, Stephen
    Pedersen, Jeffrey
    [J]. REVISTA COLOMBIANA DE ESTADISTICA, 2009, 32 (01): : 17 - 31
  • [4] Mean and Variance for Count Regression Models Based on Reparameterized Distributions
    Kokonendji, Celestin C.
    de Medeiros, Rodrigo M. R.
    Bourguignon, Marcelo
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2024, 86 (01): : 280 - 310
  • [5] Mean and Variance for Count Regression Models Based on Reparameterized Distributions
    Célestin C. Kokonendji
    Rodrigo M. R. de Medeiros
    Marcelo Bourguignon
    [J]. Sankhya B, 2024, 86 : 280 - 310
  • [6] Linear models -: Regression and variance analyses
    Lüdtke, O
    [J]. ZEITSCHRIFT FUR PADAGOGISCHE PSYCHOLOGIE, 2003, 17 (02): : 147 - 149
  • [7] Analysis of variance in nonparametric regression models
    Dette, H
    Derbort, S
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 76 (01) : 110 - 137
  • [8] On variance estimation in semiparametric regression models
    Cheng, FX
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (08) : 1737 - 1742
  • [9] ASYMPTOTIC OPTIMALITY OF CP-TYPE CRITERIA IN HIGH-DIMENSIONAL MULTIVARIATE LINEAR REGRESSION MODELS
    Imori, Shinpei
    [J]. STATISTICA SINICA, 2023, 33 : 1233 - 1248
  • [10] USE AND ABUSE OF VARIANCE MODELS IN REGRESSION
    VANHOUWELINGEN, JC
    [J]. BIOMETRICS, 1988, 44 (04) : 1073 - 1081