Anomaly Detection in Surveillance Videos via Memory-augmented Frame Prediction

被引:0
|
作者
Yang, Rui [1 ]
Li, Qun [1 ]
Shen, Yaying [1 ]
Zhang, Ziyi [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
anomaly detection; frame prediction; autoencoder; memory module;
D O I
10.1109/IJCNN55064.2022.9892924
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection in surveillance videos is a challenging task in computer vision, and can be defined as the detection of actions or events that do not conform to the expected behaviors. Most of the existing methods solve the task by minimizing the reconstruction errors between the ground-truth video frames and their reconstructed frames. However, these methods sometimes reconstruct anomalies well that results in high false detections and a decrease of the performance. Therefore, we propose a frame prediction method which is based on a memory-augmented scheme for anomaly detection. Our method regards anomaly detection as a frame prediction task, and uses a generative network to achieve the frame prediction. For generating high quality video frames, we embed a memory module into the generative network, which effectively improves the feature representation of normal events and reduces the representation of abnormal events. In addition, we adapt an attention mechanism to model the interdependence between feature channels. In order to evaluate our method, we introduce a new anomaly detection dataset that consists of real and multiscene surveillance videos. Extensive experiments on our dataset and publicly available datasets validate the effectiveness and robustness of our proposed method.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Anomaly Detection for CPS via Memory-Augmented Reconstruction and Time Series Prediction
    Sun, Zhe
    Li, Jinguo
    [J]. 2022 IEEE 19TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2022), 2022, : 530 - 536
  • [2] Hyperspectral anomaly detection via memory-augmented autoencoders
    Zhao, Zhe
    Sun, Bangyong
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1274 - 1287
  • [3] A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction
    Liu, Zhian
    Nie, Yongwei
    Long, Chengjiang
    Zhang, Qing
    Li, Guiqing
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 13568 - 13577
  • [4] Memory-Augmented Generative Adversarial Networks for Anomaly Detection
    Yang, Ziyi
    Zhang, Teng
    Bozchalooi, Iman Soltani
    Darve, Eric
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2324 - 2334
  • [5] Pose-Motion Video Anomaly Detection via Memory-Augmented Reconstruction and Conditional Variational Prediction
    Wan, Weilin
    Zhang, Weizhong
    Jin, Cheng
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2729 - 2734
  • [6] A Cognitive Memory-Augmented Network for Visual Anomaly Detection
    Wang, Tian
    Xu, Xing
    Shen, Fumin
    Yang, Yang
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (07) : 1296 - 1307
  • [7] A Cognitive Memory-Augmented Network for Visual Anomaly Detection
    Tian Wang
    Xing Xu
    Fumin Shen
    Yang Yang
    [J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (07) : 1296 - 1307
  • [8] Network Anomaly Detection Using Memory-Augmented Deep Autoencoder
    Min, Byeongjun
    Yoo, Jihoon
    Kim, Sangsoo
    Shin, Dongil
    Shin, Dongkyoo
    [J]. IEEE ACCESS, 2021, 9 : 104695 - 104706
  • [9] Anomaly Detection With Memory-Augmented Adversarial Autoencoder Networks for Industry 5.0
    Zhang, Huan
    Kumar, Neeraj
    Wu, Sheng
    Wu, Chunlei
    Wang, Jian
    Zhang, Peiying
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 1952 - 1962
  • [10] Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
    Gong, Dong
    Liu, Lingqiao
    Le, Vuong
    Saha, Budhaditya
    Mansour, Moussa Reda
    Venkatesh, Svetha
    van den Hengel, Anton
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1705 - 1714