A Fusion Measurement Approach to Improve Quantum State Tomography Efficiency and Accuracy

被引:4
|
作者
Kuang, Sen [1 ]
Wu, Benwei [1 ]
Cong, Shuang [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
基金
中国国家自然科学基金;
关键词
Information fusion; multiple measurement devices (MMDs); probability estimation; quantum state measurement; quantum state tomography (QST); INFORMATION FUSION; TRACKING; QUBIT;
D O I
10.1109/TIM.2019.2927546
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum state tomography (QST) is an important tool for estimating an unknown quantum state, which includes a measurement process and a reconstruction process. The state estimation error involves the measurement-induced (probability estimation) error in the measurement process and the calculation error in the reconstruction process. Via the mean-square error methods, we propose two fusion measurement schemes with multiple measurement devices (MMDs) to improve the efficiency and accuracy of quantum state measurement and QST by using information fusion theory. These two schemes are founded on the parallel synchronous measurements of MMDs and, therefore, can improve the efficiency of quantum state measurement and tomography. At the same time, by fusing measurement data from different measurement devices in optimal and suboptimal manners, the proposed multiple-measurement-device fusion measurement schemes achieve the improvement of quantum state measurement and tomography accuracy. Numerical simulations are presented to demonstrate the proposed method.
引用
收藏
页码:3049 / 3060
页数:12
相关论文
共 50 条
  • [1] Sensor Fusion To Improve State Estimate Accuracy Using Multiple Inertial Measurement Units
    Patel, Ujjval N.
    Faruque, Imraan A.
    2021 8TH IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS (INERTIAL 2021), 2021,
  • [2] EFFICIENCY OF QUANTUM STATE TOMOGRAPHY FOR QUBITS
    Yamagata, Koichi
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 (04) : 1167 - 1183
  • [3] Bayesian approach to quantum state tomography
    Castelletto, S
    Degiovanni, IP
    Rastello, ML
    Berchera, IR
    ADVANCED MATHEMATICAL & COMPUTATIONAL TOOLS IN METROLOGY VI, 2004, 66 : 279 - 281
  • [4] Adaptive Quantum State Tomography Improves Accuracy Quadratically
    Mahler, D. H.
    Rozema, Lee A.
    Darabi, Ardavan
    Ferrie, Christopher
    Blume-Kohout, Robin
    Steinberg, A. M.
    PHYSICAL REVIEW LETTERS, 2013, 111 (18)
  • [5] System for High Accuracy Internal Quantum Efficiency Measurement
    Ciocan, R.
    Li, Z.
    Feldman, A.
    Donohue, J.
    2009 34TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-3, 2009, : 268 - 270
  • [6] Quantum state tomography with a single measurement setup
    Oren, Dikla
    Mutzafi, Maor
    Eldar, Yonina C.
    Segev, Mordechai
    OPTICA, 2017, 4 (08): : 993 - 999
  • [7] Quantum state fusion via generalized measurement
    Huang, Yu
    Yang, Ming
    Lin, Zhi
    Li, Xi-Kun
    Ullah, Arif
    Cao, Zhuo-Liang
    PHYSICS LETTERS A, 2024, 508
  • [8] Emission tomography for quantum state measurement in matter
    Walmsley, IA
    Waxer, L
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1998, 31 (09) : 1825 - 1863
  • [9] Statistical Estimation of the Efficiency of Quantum State Tomography Protocols
    Bogdanov, Yu. I.
    Brida, G.
    Genovese, M.
    Kulik, S. P.
    Moreva, E. V.
    Shurupov, A. P.
    PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [10] Maximal Entropy Approach for Quantum State Tomography
    Gupta, Rishabh
    Xia, Rongxin
    Levine, Raphael D.
    Kais, Sabre
    PRX QUANTUM, 2021, 2 (01):