Unsupervised topological learning for identification of atomic structures

被引:11
|
作者
Becker, Sebastien [1 ,2 ]
Devijver, Emilie [2 ]
Molinier, Remi [3 ]
Jakse, Noel [1 ]
机构
[1] Univ Grenoble Alpes, SIMaP, Grenoble INP, CNRS, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, LIG, Grenoble INP, CNRS, F-38000 Grenoble, France
[3] Univ Grenoble Alpes, CNRS, F-38000 Grenoble, France
关键词
BOND-ORIENTATIONAL ORDER; MOLECULAR-DYNAMICS; LIQUIDS; NUCLEATION; HETEROGENEITY; PERSISTENCE; HIDDEN;
D O I
10.1103/PhysRevE.105.045304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose an unsupervised learning methodology with descriptors based on topological data analysis (TDA) concepts to describe the local structural properties of materials at the atomic scale. Based only on atomic positions and without a priori knowledge, our method allows for an autonomous identification of clusters of atomic structures through a Gaussian mixture model. We apply successfully this approach to the analysis of elemental Zr in the crystalline and liquid states as well as homogeneous nucleation events under deep undercooling conditions. This opens the way to deeper and autonomous study of complex phenomena in materials at the atomic scale.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Unsupervised interpretable learning of topological indices invariant under permutations of atomic bands
    Balabanov, Oleksandr
    Granath, Mats
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02):
  • [2] Topological Methods for Unsupervised Learning
    McInnes, Leland
    [J]. GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 343 - 350
  • [3] Analog Circuit Topological Feature Extraction with Unsupervised Learning of New Sub-Structures
    Li, Hao
    Jiao, Fanshu
    Doboli, Alex
    [J]. PROCEEDINGS OF THE 2016 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2016, : 1509 - 1512
  • [4] Unsupervised identification of Floquet topological phase boundaries
    Ma, Nannan
    Gong, Jiangbin
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [5] Opinion retrieval through unsupervised topological learning
    Rogovschi, Nicoleta
    Grozavu, Nistor
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3130 - 3134
  • [6] Unsupervised topological learning approach of crystal nucleation
    Sébastien Becker
    Emilie Devijver
    Rémi Molinier
    Noël Jakse
    [J]. Scientific Reports, 12
  • [7] Unsupervised learning using topological data augmentation
    Balabanov, Oleksandr
    Granath, Mats
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [8] A Recommendation System Based on Unsupervised Topological Learning
    Falih, Issam
    Grozavu, Nistor
    Kanawati, Rushed
    Bennani, Younes
    [J]. NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 224 - 232
  • [9] Unsupervised topological learning approach of crystal nucleation
    Becker, Sebastien
    Devijver, Emilie
    Molinier, Remi
    Jakse, Noel
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Unsupervised learning of topological phase diagram using topological data analysis
    Park, Sungjoon
    Hwang, Yoonseok
    Yang, Bohm-Jung
    [J]. PHYSICAL REVIEW B, 2022, 105 (19)