Toroidal inductively coupled superconducting fault current limiter with interleaved windings

被引:3
|
作者
Evans, PD [1 ]
Okazaki, T [1 ]
机构
[1] Univ Birmingham, Sch Elect & Elect Engn, Birmingham B15 2TT, W Midlands, England
来源
关键词
fault current limiter; interleaved windings; high temperature super conductors;
D O I
10.1049/ip-epa:19982335
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The characteristics and performance of small prototype inductively-coupled fault current limiter (FCL) are described. The FCL in question has an unusual toroidal geometry in which primary and secondary coils are interleaved to minimise leakage fields and leakage inductance and maximise the effective utilisation of superconducting material. The paper investigates the effect of winding configurations and geometry on the electromagnetic properties of the FCL. The construction of the prototype uses superconducting secondary coils made from double-sided YBCO thick film layers on ring shaped zirconia substrates. The primary windings were made of planar coils of copper wire. An interleaved winding structure produces a leakage inductance that is less than one-tenth of that obtained with an equivalent 'E' core transformer. Computed and measured leakage impedance are shown to be in good agreement. Transient and current limiting measurements demonstrate that the proposed FCL displays typical characteristics. The advantages of interleaved winding configurations are demonstrated directly by varying the degree of interleaving of the windings on the prototype FCL.
引用
收藏
页码:593 / 599
页数:7
相关论文
共 50 条
  • [2] The principle of operation of a three-windings superconducting fault current limiter
    Majka, Michal
    Kozak, Janusz
    PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (12): : 164 - 167
  • [3] TOWARDS THE SUPERCONDUCTING FAULT CURRENT LIMITER
    THURIES, E
    PHAM, VD
    LAUMOND, Y
    VERHAEGE, T
    FEVRIER, A
    COLLET, M
    BEKHALED, M
    IEEE TRANSACTIONS ON POWER DELIVERY, 1991, 6 (02) : 801 - 808
  • [4] Development of superconducting fault current limiter
    Xiao, X.
    Li, J.
    Ye, M.
    Tang, Y.
    Cheng, S.
    Dianli Xitong Zidonghue/Automation of Electric Power Systems, 2001, 25 (10): : 64 - 68
  • [5] A fault current limiter with a superconducting winding
    Danko, V. G.
    Goncharov, E., V
    ELECTRICAL ENGINEERING & ELECTROMECHANICS, 2012, (04) : 28 - 30
  • [6] SUPERCONDUCTING FAULT-CURRENT LIMITER
    GRAY, KE
    FOWLER, DE
    JOURNAL OF APPLIED PHYSICS, 1978, 49 (04) : 2546 - 2550
  • [7] SUPERCONDUCTING FAULT CURRENT LIMITER DEVELOPMENT
    ITO, D
    TSURUNAGA, K
    YONEDA, ES
    SUGIYAMA, Y
    HARA, T
    OKANIWA, K
    HOSHINO, H
    YAMAMOTO, T
    IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (02) : 2345 - 2348
  • [8] DC superconducting fault current limiter
    Tixador, P
    Villard, C
    Cointe, Y
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (03): : S118 - S125
  • [9] Semi-empirical correlation for quench time of inductively coupled fault current limiter
    Cha, YS
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) : 1974 - 1977
  • [10] THE CURRENT STATUS OF SUPERCONDUCTING FAULT CURRENT LIMITER DEVELOPMENT
    YONEDA, ES
    TASAKI, K
    YAZAWA, T
    MAEDA, H
    MATSUZAKI, J
    TSURUNAGA, K
    TADA, T
    FUJISAWA, A
    ITO, D
    HARA, T
    NAKADE, M
    OOKUMA, T
    CRYOGENICS, 1994, 34 : 749 - 752